Reduction and adsorption of hydrogen peroxide in the oxygen and beryllium vacancies of beryllium oxide nanotubes

被引:0
|
作者
Ali A Rajhi
Sagr Alamri
Ghaffar Ebadi
机构
[1] King Khalid University,Department of Mechanical Engineering, College of Engineering
来源
Pramana | / 96卷
关键词
Density functional theory; adsorption; reduction; BeO nanotube; nanostructure; hydrogen peroxide; 03.65.-w; 03.65.Ta; 0.5; 20.Dd; 05.40.Ca;
D O I
暂无
中图分类号
学科分类号
摘要
The adsorption of the hydrogen peroxide (H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2})$$\end{document} molecule onto pure and (O or Be) vacancies of BeO nanotube (BeONT) was studied using density functional theory computations. As H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} approaches the pure BeONT and Be-vacancy BeONT, their adsorption releases −8.3 and −31.3 kcal/mol, respectively, indicating physisorption. Also, the electronic properties of the nanotube do not change significantly. But when H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} approaches the O-vacancy BeONT (VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT), its adsorption releases −471.2 kcal/mol of energy, and electronic analysis showed that the VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT HOMO/LUMO gap reduces approximately about −29.9% and the electrical conductivity increases significantly. The reactivity of Be atoms of the defect is more towards H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} reduction to H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O compared with perfect ones. Throughout the process of adsorption, the diffusion of the O atom of the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} molecule was into the vacancy site, thereby dissociating the O–O and O–H bonds of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2\, }$$\end{document}and forming H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O. Therefore, VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT can generate electrical signals when the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} molecule approaches, being a hopeful sensor.
引用
收藏
相关论文
共 50 条
  • [1] Reduction and adsorption of hydrogen peroxide in the oxygen and beryllium vacancies of beryllium oxide nanotubes
    Rajhi, Ali A.
    Alamri, Sagr
    Ebadi, Ghaffar
    PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (02):
  • [2] Hydrogen peroxide reduction in the oxygen vacancies of ZnO nanotubes
    Peyghan, Ali Ahmadi
    Laeen, Shima Parizad
    Aslanzadeh, Saeed Amir
    Moradi, Morteza
    THIN SOLID FILMS, 2014, 556 : 566 - 570
  • [3] RADIATION ADSORPTION OF OXYGEN AND HYDROGEN ON THE SURFACE OF BERYLLIUM-OXIDE
    ERMATOV, SE
    TUSEEV, T
    ZHURNAL FIZICHESKOI KHIMII, 1980, 54 (10): : 2528 - 2531
  • [4] PRINCIPLES OF THE ADSORPTION OF OXYGEN, HYDROGEN AND METHANOL MOLECULES ON THE SURFACE OF IRRADIATED BERYLLIUM OXIDE
    KOSHEROV, TS
    AKSENOVA, TI
    ZHURNAL FIZICHESKOI KHIMII, 1988, 62 (12): : 3283 - 3286
  • [5] ADSORPTION OF NITROGEN HYDROGEN OXYGEN AND CARBON MONOXIDE ON A BERYLLIUM FILM
    HURD, JT
    ADAMS, RO
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1969, 6 (01): : 229 - &
  • [6] REACTION OF HYDROGEN WITH BERYLLIUM OXIDE
    LOW, MJD
    RAMASUBR.N
    JOURNAL OF PHYSICAL CHEMISTRY, 1966, 70 (03): : 933 - &
  • [7] METALLOTHERMIC REDUCTION OF BERYLLIUM OXIDE
    CAMPBELL, TT
    MUSSLER, RE
    BLOCK, FE
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1966, 236 (10): : 1456 - &
  • [8] Quantum Modeling of Hydrogen Retention in Beryllium Bulk and Vacancies
    Allouche, A.
    Oberkofler, M.
    Reinelt, M.
    Linsmeier, Ch.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (08): : 3588 - 3598
  • [9] HYDROGEN BOMBARDMENT OF THE OXIDE LAYER ON BERYLLIUM
    BASTASZ, R
    THIN SOLID FILMS, 1984, 121 (02) : 127 - 133
  • [10] A STUDY OF THE CALCIUM REDUCTION OF BERYLLIUM OXIDE
    BUDDERY, JH
    THACKRAY, RW
    JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1956, 3 (3-4): : 190 - 193