Reduction and adsorption of hydrogen peroxide in the oxygen and beryllium vacancies of beryllium oxide nanotubes

被引:0
作者
Ali A Rajhi
Sagr Alamri
Ghaffar Ebadi
机构
[1] King Khalid University,Department of Mechanical Engineering, College of Engineering
来源
Pramana | / 96卷
关键词
Density functional theory; adsorption; reduction; BeO nanotube; nanostructure; hydrogen peroxide; 03.65.-w; 03.65.Ta; 0.5; 20.Dd; 05.40.Ca;
D O I
暂无
中图分类号
学科分类号
摘要
The adsorption of the hydrogen peroxide (H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2})$$\end{document} molecule onto pure and (O or Be) vacancies of BeO nanotube (BeONT) was studied using density functional theory computations. As H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} approaches the pure BeONT and Be-vacancy BeONT, their adsorption releases −8.3 and −31.3 kcal/mol, respectively, indicating physisorption. Also, the electronic properties of the nanotube do not change significantly. But when H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} approaches the O-vacancy BeONT (VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT), its adsorption releases −471.2 kcal/mol of energy, and electronic analysis showed that the VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT HOMO/LUMO gap reduces approximately about −29.9% and the electrical conductivity increases significantly. The reactivity of Be atoms of the defect is more towards H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} reduction to H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O compared with perfect ones. Throughout the process of adsorption, the diffusion of the O atom of the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} molecule was into the vacancy site, thereby dissociating the O–O and O–H bonds of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2\, }$$\end{document}and forming H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O. Therefore, VO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{O}}$$\end{document}-BeONT can generate electrical signals when the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} molecule approaches, being a hopeful sensor.
引用
收藏
相关论文
共 156 条
  • [1] Peyghan AA(2014)Pramana - Thin Solid Films 556 566-undefined
  • [2] Laeen SP(2016)Pramana - Adv. Energy Mater. 6 1502588-undefined
  • [3] Aslanzadeh SA(2020)Pramana - J. Sulphur Chem. 41 82-undefined
  • [4] Moradi M(2021)Pramana - Chin. Chem. Lett. 25 541-undefined
  • [5] Zhang X(2014)D kyun Seo, J B Yoo, S H Hong, T J Kang and Y H Kim J. Clust. Sci. 59 10888-undefined
  • [6] Tang Y(2020)undefined Angew. Chem. Int. Ed. 13 8264-undefined
  • [7] Zhang F(2021)undefined Nanoscale 79 443-undefined
  • [8] Lee C(2012)undefined J. Phys. 58 1183-undefined
  • [9] Rahmani Z(2002)undefined J. Phys. 65 663-undefined
  • [10] Edjlali L(2005)undefined J. Phys. 82 1103-undefined