Absolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicity

被引:0
作者
Jonathan Rohleder
Christian Seifert
机构
[1] Stockholms universitet Matematik,
[2] TU Hamburg Institut für Mathematik,undefined
来源
Integral Equations and Operator Theory | 2017年 / 89卷
关键词
Schrödinger operator; Quantum graph; Tree; Absolutely continuous spectrum; Primary 34L05; Secondary 34L40; 35Q40;
D O I
暂无
中图分类号
学科分类号
摘要
On an infinite, radial metric tree graph we consider the corresponding Laplacian equipped with self-adjoint vertex conditions from a large class including δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}- and weighted δ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta '$$\end{document}-couplings. Assuming the numbers of different edge lengths, branching numbers and different coupling conditions to be finite, we prove that the presence of absolutely continuous spectrum implies that the sequence of geometric data of the tree as well as the coupling conditions are eventually periodic. On the other hand, we provide examples of self-adjoint, non-periodic couplings which admit absolutely continuous spectrum.
引用
收藏
页码:439 / 453
页数:14
相关论文
共 46 条
[21]   The absolutely continuous spectrum of one-dimensional schrodingr operators [J].
Remling, Christian .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2007, 10 (04) :359-373
[22]   Absolutely continuous spectrum for random Schrodinger operators on the Bethe strip [J].
Klein, Abel ;
Sadel, Christian .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) :5-26
[23]   On absolutely continuous spectrum for one-channel unitary operators [J].
Bourget, Olivier ;
Moreno, Gregorio ;
Sadel, Christian ;
Taarabt, Amal .
LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (05)
[24]   Transfer matrices for discrete Hermitian operators and absolutely continuous spectrum [J].
Sadel, Christian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (08)
[25]   Crystalline Conductance and Absolutely Continuous Spectrum of 1D Samples [J].
Bruneau, Laurent ;
Jaksic, Vojkan ;
Last, Yoram ;
Pillet, Claude-Alain .
LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (06) :787-797
[26]   The Absolutely Continuous Spectrum of One-dimensional Schrödinger Operators [J].
Christian Remling .
Mathematical Physics, Analysis and Geometry, 2007, 10 :359-373
[27]   Crystalline Conductance and Absolutely Continuous Spectrum of 1D Samples [J].
Laurent Bruneau ;
Vojkan Jakšić ;
Yoram Last ;
Claude-Alain Pillet .
Letters in Mathematical Physics, 2016, 106 :787-797
[28]   Absolutely continuous spectrum of discrete Schrodinger operators with slowly oscillating potentials [J].
Kim, Ahyoung ;
Kiselev, Alexander .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (04) :552-568
[29]   Stokes' phenomenon and the absolutely continuous spectrum of one-dimensional Schrodinger operators [J].
Gilbert, DJ ;
Wood, AD .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 171 (1-2) :247-264
[30]   Absolutely continuous spectrum of Schrodinger operators with potentials slowly decaying inside a cone [J].
Safronov, Oleg ;
Stolz, Gunter .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :192-208