Absolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicity

被引:0
|
作者
Jonathan Rohleder
Christian Seifert
机构
[1] Stockholms universitet Matematik,
[2] TU Hamburg Institut für Mathematik,undefined
来源
Integral Equations and Operator Theory | 2017年 / 89卷
关键词
Schrödinger operator; Quantum graph; Tree; Absolutely continuous spectrum; Primary 34L05; Secondary 34L40; 35Q40;
D O I
暂无
中图分类号
学科分类号
摘要
On an infinite, radial metric tree graph we consider the corresponding Laplacian equipped with self-adjoint vertex conditions from a large class including δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}- and weighted δ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta '$$\end{document}-couplings. Assuming the numbers of different edge lengths, branching numbers and different coupling conditions to be finite, we prove that the presence of absolutely continuous spectrum implies that the sequence of geometric data of the tree as well as the coupling conditions are eventually periodic. On the other hand, we provide examples of self-adjoint, non-periodic couplings which admit absolutely continuous spectrum.
引用
收藏
页码:439 / 453
页数:14
相关论文
共 46 条
  • [1] Absolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicity
    Rohleder, Jonathan
    Seifert, Christian
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 89 (03) : 439 - 453
  • [2] Absence of Absolutely Continuous Spectrum for the Kirchhoff Laplacian on Radial Trees
    Pavel Exner
    Christian Seifert
    Peter Stollmann
    Annales Henri Poincaré, 2014, 15 : 1109 - 1121
  • [3] Absence of Absolutely Continuous Spectrum for the Kirchhoff Laplacian on Radial Trees
    Exner, Pavel
    Seifert, Christian
    Stollmann, Peter
    ANNALES HENRI POINCARE, 2014, 15 (06): : 1109 - 1121
  • [4] ON THE ABSOLUTELY CONTINUOUS SPECTRUM OF STURM-LIOUVILLE OPERATORS WITH APPLICATIONS TO RADIAL QUANTUM TREES
    Schmied, Michael
    Sims, Robert
    Teschl, Gerald
    OPERATORS AND MATRICES, 2008, 2 (03): : 417 - 434
  • [5] Jacobi matrices with absolutely continuous spectrum
    Janas, J
    Naboko, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) : 791 - 800
  • [6] On the absolutely continuous spectrum of Dirac operator
    Denisov, SA
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (9-10) : 1403 - 1428
  • [7] On the absolutely continuous spectrum of block operator matrices
    Albeverio, Sergio
    Konstantinov, Allexei
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (08) : 1079 - 1087
  • [8] On the measure of the absolutely continuous spectrum for Jacobi matrices
    Shamis, Mira
    Sodin, Sasha
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (04) : 491 - 504
  • [9] On the preservation of absolutely continuous spectrum for Schrodinger operators
    Denisov, SA
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 231 (01) : 143 - 156
  • [10] ABSOLUTELY CONTINUOUS-SPECTRUM FOR SPARSE POTENTIALS
    KRISHNA, M
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1993, 103 (03): : 333 - 339