Generalized Convex Envelopes of Sets and the Problem of Shadow

被引:0
作者
Zelinskii Y.B. [1 ]
机构
[1] Institute of Mathematics of the NAS of Ukraine, Kiev
关键词
ball; convexity; Euclidean space; linear convexity; sphere;
D O I
10.1007/s10958-015-2626-8
中图分类号
学科分类号
摘要
The principal goal of the present work is to solve the problem of shadow for any convex set with nonempty interior in the n-dimensional Euclidean space and under the action of a group of transformations. This problem can be considered as the determination of conditions ensuring the membership of a point to a generalized convex envelope of the family of sets obtained from the initial set by the action of the group of transformations. © 2015, Springer Science+Business Media New York.
引用
收藏
页码:710 / 717
页数:7
相关论文
共 13 条
[1]  
Aizenberg L.A., On the expansion of holomorphic functions of many complex variables into simple fractions, Sibir. Mat. Zh., 8, 5, pp. 1124-1142, (1967)
[2]  
Aizenberg L.A., Yuzhakov A.P., Integral Representations and Residues in Multidimensional Complex Analysis [in Russian], (1979)
[3]  
Anderson R.D., Klee V.L., Convex functions and upper-semi-continuous collections, Duke Math. J., 19, pp. 349-357, (1952)
[4]  
Andersson M., Passare M., Sigurdsson R., Complex Convexity and Analytic Functionals, (2005)
[5]  
Behnke H., Peschl E., Zur Theorie der Funktionen mehrerer komplexer Veränderlichen Konvexität in bezug auf analytische Ebenen im kleinen und großen, Math. Ann., 111, 2, pp. 158-177, (1935)
[6]  
Hormander L., Notions of Convexity, (2007)
[7]  
Khudaiberganov G., On the Homogeneous Polynomially Convex Envelope of a Union of Balls [in Russian], Manuscr. dep. 21.02, Dep., VINITI, Moscow, 1982, 1772, (1982)
[8]  
Leichtweiss K., Konvexe Mengen, (1980)
[9]  
Martineau A., Sur la topologie des espaces de fonctions holomorphes, Math. Ann., 163, 1, pp. 62-88, (1966)
[10]  
Soltan V.P., Introduction into the Axiomatic Theory of Convexity [in Russian], (1984)