Biotransformation of aromatic compounds from wastewaters containing N and/or S, by nitrification/denitrification: A review

被引:19
作者
Beristain-Cardoso R. [1 ,2 ]
Texier A.-C. [2 ]
Razo-Flores E. [3 ]
Méndez-Pampín R. [1 ]
Gómez J. [2 ]
机构
[1] Department of Chemical Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Rua Lope Gómez de Marzoa s/n
[2] Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, 09340 Iztapalapa, DF
[3] División de Ciencias Ambientales, Instituto Potosíno de Investigación Científica y Tecnológica, 78216 San Luis Potosí, SLP, Camino a la Presa San José No. 2055
基金
美国国家科学基金会;
关键词
Denitrification; Litho-organotrophic; Nitrification; Phenolic compounds; Sulfide;
D O I
10.1007/s11157-009-9172-0
中图分类号
学科分类号
摘要
This review presents progress made over the last decades in the understanding of the metabolic capabilities of nitrifying and denitrifying microorganisms for the biotransformation of nitrogen, sulfur, and carbon compounds present in wastewaters. There are nowadays still many discoveries to be made about the metabolism, phylogeny and ecological behavior of bacteria that play an important role in the nitrogen cycle. The interest of the scientific community in the biological nitrogen cycle is at present very high, because it can be linked to either sulfur or carbon cycles. The connection of biological cycles is of the utmost technological relevance as it has allowed the simultaneous elimination of reduced sulfur and phenolic compounds under nitrifying or denitrifying conditions. The environmental factors affecting the nitrification and denitrification biological processes are described in this review. © Springer Science+Business Media B.V. 2009.
引用
收藏
页码:325 / 342
页数:17
相关论文
共 151 条
[131]  
van der Hoek J.P., Kappelhof J.W.N.M., Hijnen W.A.M., Biological nitrate removal from ground-water by sulfur limestone denitrification, J Chem Technol Biot, 54, pp. 197-200, (1992)
[132]  
van Schie P.M., Young L.Y., Biodegradation of phenol: Mechanisms and applications, Bioremediation J, 4, pp. 1-18, (2000)
[133]  
Verstraete W., Philips S., Nitrification-denitrification processes and technologies in new contexts, Environ Pollut, 102, pp. 717-726, (1998)
[134]  
Visser J.M., de Joung G.A.H., de Vries S., Robertson L.A., Kuenen J.G., Cbb (3)-type cytochrome oxidase in the obligately chemolithoautotrophic Thiobacillus sp, FEMS Microbiol Ecol, 147, pp. 127-132, (1997)
[135]  
Visser J.M., Robertson L.A., van Verseveld H.W., Kuenen J.G., Sulfur production by obligately chemolithoautotrophic Thiobacillus species, Appl Environ Microbiol, 63, pp. 2300-2305, (1997)
[136]  
Volcke E.I., Loccufier M., Noldus E.J., Vanrolleghem P.A., Operation of a SHARON nitritation reactor: Practical implications from a theoretical study, Water Sci Technol, 56, pp. 145-154, (2007)
[137]  
Wang A.J., Du D.Z., Ren N.Q., van Groenestijn J.W., An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans, J Environ Sci Health A Tox Hazard Subst Environ Eng, 40, pp. 1939-1949, (2005)
[138]  
Watson H.M., A comparison of the effects of two methods of acclimation on anerobic biodegradability, Environ Toxicol Chem, 12, pp. 2023-2030, (1993)
[139]  
Wett B., Rostek R., Rauch W., Ingerle K., PH-controlled reject-water-treatment, Water Sci Technol, 37, pp. 165-172, (1998)
[140]  
Wicht H., A model for predicting nitrous oxide production during denitrification in activated sludge, Water Sci Technol, 34, pp. 99-106, (1996)