Galectin-3 is involved in inflammation and fibrosis in arteriogenic erectile dysfunction via the TLR4/MyD88/NF-κB pathway

被引:0
|
作者
Guanbo Wang
Ruiyu Li
Chen Feng
Kefan Li
Shuai Liu
Qiang Fu
机构
[1] Shandong Provincial Hospital Affiliated to Shandong First Medical University,Department of Urology
[2] Shandong University,Department of Urology, Shandong Provincial Hospital
[3] Shandong Provincial Hospital Affiliated to Shandong First Medical University,Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Galectin-3 (Gal-3) is a multifunctional protein that has been linked to fibrosis and inflammation in the cardiovascular system. In this study, we examined the impact of Gal-3 on inflammation and fibrosis in patients with arteriogenic erectile dysfunction (A-ED) and the underlying mechanisms involved. To induce arterial injury, we utilized cuffs on the periaqueductal common iliac arteries of Sprague‒Dawley (SD) rats and administered a high-fat diet to co-induce local atherosclerosis. Our results showed that we successfully developed a novel A-ED model that was validated based on histological evidence. In vivo, the vascular lumen of rats subjected to a high-fat diet and cuff placement exhibited significant narrowing, accompanied by the upregulation of Gal-3, Toll-like receptor 4 (TLR4), and myeloid differentiation primary response protein 88 (MyD88) expression in the penile cavernosa. This led to the activation of nuclear factor kappa B 65 (NF-κB-p65), resulting in reduced intracavernosal pressure, endothelial nitric oxide synthase expression, and smooth muscle content, promoting inflammation and fibrosis. However, treatment with Gal-3 inhibitor-modified citrus pectin (MCP) significantly normalized those effects. In vitro, knocking down Gal-3 led to a significant reduction in TLR4, MyD88, and NF-κB-p65 expression in corpus cavernosum smooth muscle cells (CCSMCs), decreasing inflammation levels. In conclusion, inhibiting Gal-3 may improve A-ED by reducing inflammation, endothelial injury, and fibrosis in the penile corpus cavernosum through the TLR4/MyD88/NF-κB pathway. These findings highlight the potential therapeutic target of Gal-3 in A-ED.
引用
收藏
相关论文
共 50 条
  • [11] Isovitexin alleviates acute gouty arthritis in rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway
    Sun, Xiujiang
    Li, Peng
    Qu, Xiaoyi
    Liu, Wenguang
    PHARMACEUTICAL BIOLOGY, 2021, 59 (01) : 1326 - 1333
  • [12] Baishouwu Extract Suppresses the Development of Hepatocellular Carcinoma via TLR4/MyD88/NF-κB Pathway
    Ding, Yong-fang
    Peng, Zi-xuan
    Ding, Lan
    Peng, Yun-ru
    FRONTIERS IN PHARMACOLOGY, 2019, 10
  • [13] MECHANISM OF DENDROBINE ON DIABETIC RETINOPATHY THROUGH TLR4/MYD88/NF-κB PATHWAY
    Guo, Xixi
    Li, Chunxia
    MEDICINE, 2024, 103 (14)
  • [14] Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway
    Shi, Yuru
    Zhang, Xiaoqian
    Pei, Shengji
    Wang, Yuhua
    NATURAL PRODUCTS AND BIOPROSPECTING, 2024, 14 (01)
  • [15] Myrtenol alleviates oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-κB signaling pathway
    Liu Xuemei
    Qiu, Shengjie
    Chen, Guiying
    Liu, Mingyuan
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2021, 35 (11)
  • [16] Gentianella acuta prevents acute myocardial infarction induced by isoproterenol in rats via inhibition of galectin-3/TLR4/MyD88/NF-кB inflammatory signalling
    Jia-Huan Sun
    Hong-Xia Yang
    Ting-Ting Yao
    Yuan Li
    Lin Ruan
    Geng-Rui Xu
    Chuang Zhang
    Guo-Xin Guo
    Ai-Ying Li
    Inflammopharmacology, 2021, 29 : 205 - 219
  • [17] Schizandrin B protects LPS-induced sepsis via TLR4/NF-κB/MyD88 signaling pathway
    Xu, Jianjun
    Lu, Caijiao
    Liu, Zhengjun
    Zhang, Peng
    Guo, Hailei
    Wang, Tingting
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2018, 10 (04): : 1155 - 1163
  • [18] Bioactive glass in the treatment of ulcerative colitis to regulate the TLR4/MyD88/NF-κB pathway
    Wang, Wenhao
    Jia, Shengyuan
    Miao, Guohou
    Sun, Zhenmin
    Yu, Feng
    Gao, Zhixing
    Li, Yuli
    BIOMATERIALS ADVANCES, 2023, 152
  • [19] Astragaloside IV protects diabetic cardiomyopathy against inflammation and apoptosis via regulating TLR4/MyD88/NF-κB signaling pathway
    Wang, Liang
    Shi, Hui
    Zhao, Chun-chun
    Jing-ya Li
    Jian-fei Peng
    An-lu Shen
    Zhou, Peng
    Hui-min Bian
    JOURNAL OF FUNCTIONAL FOODS, 2022, 88
  • [20] Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway
    Zhu, Kefu
    Wang, Xihao
    Weng, Yingzheng
    Mao, Genxiang
    Bao, Yizhong
    Lou, Jiangjie
    Wu, Shaoze
    Jin, Weihua
    Tang, Lijiang
    CARDIOVASCULAR DRUGS AND THERAPY, 2024, 38 (01) : 69 - 78