Regularity Criteria for Weak Solutions to the Navier-Stokes Equations in Terms of Spectral Projections of Vorticity and Velocity

被引:1
作者
Neustupa, Jiri [1 ]
Penel, Patrick [2 ]
Yang, Minsuk [3 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Univ Sud Toulon Var, La Garde, France
[3] Yonsei Univ, Dept Math, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Navier-Stokes equations; Weak solution; Regularity criteria; Vorticity; OPERATOR;
D O I
10.1007/s00021-022-00728-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a weak solution v to the Navier-Stokes initial value problem in R-3 x (0, T), that satisfies the strong energy inequality. We impose conditions on certain spectral projections of omega:= curly or just v, and we prove the regularity of solution v. The spectral projection is defined by means of the spectral resolution of identity associated with the self-adjoint operator curl.
引用
收藏
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 1996, De Gruyter Ser. Nonlinear Anal. Appl.
[2]  
Birman M.S., 1987, SPECTRAL THEORY SELF
[3]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[4]  
Chae D., 1999, ELECTRON J DIFFER EQ, V7
[5]  
DAVEIGA HB, 1995, CR ACAD SCI I-MATH, V321, P405
[6]   On the spectrum of a Stokes-type operator arising from flow around a rotating body [J].
Farwig, Reinhard ;
Neustupa, Jiri .
MANUSCRIPTA MATHEMATICA, 2007, 122 (04) :419-437
[7]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[8]  
Galdi GP, 2000, ADV MATH FLUID MECH, P1
[9]  
Kato T., 1966, PERTURBATION THEORY, DOI 10.1007/978-3-642-53393-8
[10]   On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations [J].
Ladyzhenskaya, O. A. ;
Seregin, G. A. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (04) :356-387