On solvability of Dirichlet problem for second order elliptic equation

被引:0
作者
V. Zh. Dumanyan
机构
[1] Yerevan State University,
来源
Journal of Contemporary Mathematical Analysis | 2011年 / 46卷
关键词
elliptic equations; Dirichlet problem; solvability of Dirichlet problem; 35B60; 35D99; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
The paper gives some solvability conditions of the Dirichlet problem for the second order elliptic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - div(A(x)\nabla u) + (\bar b(x),\nabla u) - div(\bar c(x)u) + d(x)u = f(x) - divF(x),x \in Q,u|_{\partial Q} = u_0 \in L_2 (\partial Q) $$\end{document} in bounded domain Q ⊂ Rn (n ≥ 2) with smooth boundary ∂Q ∈ C1. In particular, it is proved that if the homogeneous problem has only the trivial solution, then for any u0 ∈L2(∂Q) and f, F from the corresponding functional spaces the solution of the non-homogeneous problem exists, from Gushchin’s space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{n - 1} (\bar Q) $$\end{document} and the following inequality is true: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{gathered} \left\| u \right\|_{C_{n - 1} (\bar Q)}^2 + \mathop \smallint \limits_Q r\left| {\nabla u} \right|^2 dx \leqslant \hfill \\ \leqslant C\left( {\left\| {u_0 } \right\|_{L_2 (\partial Q)}^2 + \mathop \smallint \limits_Q r^3 (1 + |\ln r|)^{3/2} f^2 dx + \mathop \smallint \limits_Q r(1 + |\ln r|)^{3/2} |F|^2 dx} \right) \hfill \\ \end{gathered} $$\end{document} where r(x) is the distance from a point x ∈ Q to the boundary ∂Q and the constant C does not depend on u0, f and F.
引用
收藏
页码:77 / 88
页数:11
相关论文
共 7 条
[1]  
Dumanyan V. J.(2010)On solvability of Dirichlet problem for elliptic equation of second order Dokl. NAN Armenii 110 120-127
[2]  
Gushchin A. K.(1988)On Dirichlet problem for elliptic equation of second degree Matem. Sbornik 137179 19-64
[3]  
Gushchin A. K.(1991)On existence of boundary values of solutions of elliptic equation Matem. Sbornik 182 787-810
[4]  
Mikhailov V. P.(2008)On behavior near the boundary of Dirichlet problem solution for general elliptic equation of second order Dokl. NAN Armenii 108 110-116
[5]  
Dumanyan V. J.(2008)On estimation of Dirichlet weighted integral of Dirichlet problem solution for second order elliptic equation Dokl. NAN Armenii 108 45-49
[6]  
Dumanyan V. J.(2010)On boundary values of Dirichlet problem solution for elliptic equation of second order Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) 45 31-52
[7]  
Dumanyan V. J.(undefined)undefined undefined undefined undefined-undefined