Approximating Minimum-Weight Triangulations in Three Dimensions

被引:0
|
作者
B. Aronov
S. Fortune
机构
[1] Computer and Information Science,
[2] Polytechnic University,undefined
[3] Brooklyn,undefined
[4] NY 11201,undefined
[5] USA aronov@ziggy.poly.edu,undefined
[6] Bell Laboratories,undefined
[7] Murray Hill,undefined
[8] NJ 07974,undefined
[9] USA sjf@research.bell-labs.com,undefined
来源
关键词
Constant Time; Average Cost; Natural Distribution; Similar Connection; Query Line;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a set of noncrossing triangular obstacles in R3 with convex hull H . A triangulation T of H is compatible with S if every triangle of S is the union of a subset of the faces of T. The weight of T is the sum of the areas of the triangles of T. We give a polynomial-time algorithm that computes a triangulation compatible with S whose weight is at most a constant times the weight of any compatible triangulation.
引用
收藏
页码:527 / 549
页数:22
相关论文
共 50 条
  • [31] The Longest Minimum-Weight Path in a Complete Graph
    Addario-Berry, Louigi
    Broutin, Nicolas
    Lugosi, Gabor
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (01): : 1 - 19
  • [32] Minimum-weight beams with shear strain energy
    Byoung Koo Lee
    Sang Jin Oh
    Tae Eun Lee
    Jung Su Park
    KSCE Journal of Civil Engineering, 2012, 16 : 145 - 154
  • [33] A GREEDY HEURISTIC FOR A MINIMUM-WEIGHT FOREST PROBLEM
    IMIELINSKA, C
    KALANTARI, B
    KHACHIYAN, L
    OPERATIONS RESEARCH LETTERS, 1993, 14 (02) : 65 - 71
  • [34] On minimum weight pseudo-triangulations
    Aichholzer, Oswin
    Aurenhammer, Franz
    Hackl, Thomas
    Speckmann, Bettina
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (6-7): : 627 - 631
  • [35] A new subgraph of minimum weight triangulations
    Wang, CA
    Chin, F
    Xu, YF
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 1997, 1 (02) : 115 - 127
  • [36] Drawing outerplanar minimum weight triangulations
    Lenhart, W
    Liotta, G
    INFORMATION PROCESSING LETTERS, 1996, 57 (05) : 253 - 260
  • [37] The drawability problem for minimum weight triangulations
    Lenhart, W
    Liotta, G
    THEORETICAL COMPUTER SCIENCE, 2002, 270 (1-2) : 261 - 286
  • [38] NONLINEAR MINIMUM-WEIGHT DESIGN OF PLANAR STRUCTURES
    VARGO, LG
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1956, 23 (10): : 956 - 960
  • [39] The minimum-weight ideal problem for signed posets
    Ando, K
    Fujishige, S
    Nemoto, T
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1996, 39 (04) : 558 - 565
  • [40] Minimum-weight beams with shear strain energy
    Lee, Byoung Koo
    Oh, Sang Jin
    Lee, Tae Eun
    Park, Jung Su
    KSCE JOURNAL OF CIVIL ENGINEERING, 2012, 16 (01) : 145 - 154