Approximating Minimum-Weight Triangulations in Three Dimensions

被引:0
|
作者
B. Aronov
S. Fortune
机构
[1] Computer and Information Science,
[2] Polytechnic University,undefined
[3] Brooklyn,undefined
[4] NY 11201,undefined
[5] USA aronov@ziggy.poly.edu,undefined
[6] Bell Laboratories,undefined
[7] Murray Hill,undefined
[8] NJ 07974,undefined
[9] USA sjf@research.bell-labs.com,undefined
来源
关键词
Constant Time; Average Cost; Natural Distribution; Similar Connection; Query Line;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a set of noncrossing triangular obstacles in R3 with convex hull H . A triangulation T of H is compatible with S if every triangle of S is the union of a subset of the faces of T. The weight of T is the sum of the areas of the triangles of T. We give a polynomial-time algorithm that computes a triangulation compatible with S whose weight is at most a constant times the weight of any compatible triangulation.
引用
收藏
页码:527 / 549
页数:22
相关论文
共 50 条
  • [21] ON GOOD TRIANGULATIONS IN THREE DIMENSIONS
    Dey, Tamal Krishna
    Bajaj, Chanderjit L.
    Sugihara, Kokichi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (01) : 75 - 95
  • [22] A new subgraph of minimum weight triangulations
    Wang, GA
    Chin, EA
    Xu, YF
    ALGORITHMS AND COMPUTATION, 1996, 1178 : 266 - 274
  • [23] DESIGN OF DRILLING FACILITIES FOR MINIMUM-WEIGHT PLATFORMS
    BOYD, NG
    TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION B-APPLIED EARTH SCIENCE, 1986, 95 : B137 - B138
  • [24] MINIMUM-WEIGHT DESIGN OF CONTINUOUS COMPOSITE GIRDERS
    ITO, M
    GALAMBOS, TV
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1993, 119 (04): : 1297 - 1311
  • [25] Elastic Minimum-Weight Annular Plates.
    Aristov, M.V.
    Troitskii, V.A.
    Izvestiya Akademii Nauk, S.S.S.R., Mekhanika Tverdogo Tela, 1975, (03): : 172 - 176
  • [26] Drawing outerplanar minimum weight triangulations
    Department of Computer Science, Williams College, Williamstown, MA 01267, United States
    不详
    Inf. Process. Lett., 5 (253-260):
  • [27] Minimum weight pseudo-triangulations
    Gudmundsson, J
    Levcopoulos, C
    FSTTCS 2004: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, 2004, 3328 : 299 - 310
  • [28] A New Subgraph of Minimum Weight Triangulations
    Cao An Wang
    Francis Chin
    Yin-Feng Xu
    Journal of Combinatorial Optimization, 1997, 1 : 115 - 127
  • [29] Minimum weight pseudo-triangulations
    Gudmundsson, Joachim
    Levcopoulos, Christos
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2007, 38 (03): : 139 - 153
  • [30] MINIMUM WEIGHT DISK TRIANGULATIONS AND FILLINGS
    Benjamini, Itai
    Lubetzky, Eyal
    Peled, Yuval
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3265 - 3287