A Strong Convergence Theorem for an Iterative Method for Solving the Split Variational Inequalities in Hilbert Spaces

被引:0
作者
Nguyen Thi Thu Thuy
机构
[1] Hanoi University of Science and Technology,School of Applied Mathematics and Informatics
来源
Vietnam Journal of Mathematics | 2022年 / 50卷
关键词
Split variational inequality problems; Split feasibility problems; Multiple-sets problems; Metric projection; 41A65; 47H17; 47H20;
D O I
暂无
中图分类号
学科分类号
摘要
There are many iterative methods for solving the split variational inequality problems involving step sizes that depend on the norm of a bounded linear operator F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal F$\end{document}. We know that the implementation of such algorithms is usually difficult to handle, because we have to compute the norm of the operator F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal F$\end{document}. In this paper, we introduce a new iterative algorithm for approximating a solution of a class of multiple-sets split variational inequality problems, without prior knowledge of operator norms. Strong convergence of the iterative process is proved. As an application, we obtain a strong convergence result for a class of multiple-sets split feasibility problem. Two numerical examples are given to illustrate the proposed iterative algorithm.
引用
收藏
页码:69 / 86
页数:17
相关论文
empty
未找到相关数据