There are many iterative methods for solving the split variational inequality problems involving step sizes that depend on the norm of a bounded linear operator F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal F$\end{document}. We know that the implementation of such algorithms is usually difficult to handle, because we have to compute the norm of the operator F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal F$\end{document}. In this paper, we introduce a new iterative algorithm for approximating a solution of a class of multiple-sets split variational inequality problems, without prior knowledge of operator norms. Strong convergence of the iterative process is proved. As an application, we obtain a strong convergence result for a class of multiple-sets split feasibility problem. Two numerical examples are given to illustrate the proposed iterative algorithm.