Schwarzschild black hole in dark energy background

被引:0
作者
Ngangbam Ishwarchandra
N. Ibohal
K. Yugindro Singh
机构
[1] Manipur University,Department of Physics
[2] Manipur University,Department of Mathematics
来源
Astrophysics and Space Science | 2014年 / 353卷
关键词
Schwarzschild solution; Dark energy; Exact solutions; Energy conditions; Surface gravity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present an exact solution of Einstein’s field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type D in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.
引用
收藏
页码:633 / 639
页数:6
相关论文
共 41 条
[1]  
Bousso R.(2008)undefined Gen. Relativ. Gravit. 40 607-637
[2]  
Cai R.G.(1998)undefined Class. Quantum Gravity 15 2783-2793
[3]  
Ji J.Y.(1998)undefined Phys. Rev. Lett. 80 1582-1585
[4]  
Soh K.S.(2003)undefined Int. J. Mod. Phys. D 12 347-368
[5]  
Caldwell R.R.(2006)undefined Int. J. Mod. Phys. D 15 1753-1935
[6]  
Dave R.(2004)undefined Phys. Rev. D 69 2738-2751
[7]  
Steinhardt P.J.(1977)undefined Phys. Rev. D 15 19-51
[8]  
Chan R.(2007)undefined Phys. Rev. D 76 853-863
[9]  
da Silva M.F.A.(2005)undefined Gen. Relativ. Gravit. 37 581-591
[10]  
da Roch J.F.V.(2009)undefined Int. J. Mod. Phys. D 18 5959-5968