Profinite surface groups and the congruence kernel of arithmetic lattices in SL2 (R)

被引:0
作者
P. A. Zalesskii
机构
[1] Universidade de Brasília,Departamento de Matemática
来源
Israel Journal of Mathematics | 2005年 / 146卷
关键词
Normal Subgroup; Finite Index; Open Subgroup; Congruence Subgroup; Finite Simple Group;
D O I
暂无
中图分类号
学科分类号
摘要
LetX be a proper, nonsingular, connected algebraic curve of genusg over the fieldC of complex numbers. The algebraic fundamental group Γ = π1 (X) in the sense of [SGA-1] (1971) is the profinite completion of the fundamental group π1top (X) of a compact oriented 2-manifold. We prove that every projective normal (respectively, characteristic, accessible) subgroup of Γ is isomorphic to a normal (respectively, characteristic, accessible) subgroup of a free profinite group. We use this description to give a complete solution of the congruence subgroup problem for arithmetic lattices in SL2 (R).
引用
收藏
页码:111 / 123
页数:12
相关论文
共 5 条
  • [1] Engler A.(2004)Normal subgroups of profinite groups of finite cohomological dimension Journal of the London Mathematical Society 69 317-332
  • [2] Haran D.(1978)Normal subgroups of free profinite groups Izvestiya Akademii Nauk SSSR 42 3-25
  • [3] Kochloukova D.(undefined)undefined undefined undefined undefined-undefined
  • [4] Zalesskii P. A.(undefined)undefined undefined undefined undefined-undefined
  • [5] Mel'nikov O. V.(undefined)undefined undefined undefined undefined-undefined