S-duality and the prepotential in N=2⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}={2}^{\star } $$\end{document} theories (I): the ADE algebras

被引:0
作者
M. Billó
M. Frau
F. Fucito
A. Lerda
J. F. Morales
机构
[1] Università di Torino,Dipartimento di Fisica
[2] and I.N.F.N. - sezione di Torino,I.N.F.N
[3] Università di Roma Tor Vergata, sezione di Roma 2, and Dipartimento di Fisica
[4] Università del Piemonte Orientale,Dipartimento di Scienze e Innovazione Tecnologica
[5] and I.N.F.N. - Gruppo Collegato di Alessandria - sezione di Torino,undefined
关键词
Supersymmetric gauge theory; Duality in Gauge Field Theories; Solitons Monopoles and Instantons; Nonperturbative Effects;
D O I
10.1007/JHEP11(2015)024
中图分类号
学科分类号
摘要
The prepotential of N=2⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}={2}^{\star } $$\end{document} supersymmetric theories with unitary gauge groups in an Ω background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N=2⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}={2}^{\star } $$\end{document} theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL2,ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{S}\mathrm{L}\left(2,\ \mathbb{Z}\right) $$\end{document}. The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.
引用
收藏
相关论文
共 121 条
[1]  
Montonen C(1977)Magnetic monopoles as gauge particles? Phys. Lett. B 72 117-undefined
[2]  
Olive DI(1994)A strong coupling test of S duality Nucl. Phys. B 431 3-undefined
[3]  
Vafa C(1995)S duality in N = 4 Yang-Mills theories with general gauge groups Nucl. Phys. B 448 127-undefined
[4]  
Witten E(1977)Gauge theories and magnetic charge Nucl. Phys. B 125 1-undefined
[5]  
Girardello L(1994)Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD Nucl. Phys. B 431 484-undefined
[6]  
Giveon A(2004)Seiberg-Witten prepotential from instanton counting Adv. Theor. Math. Phys. 7 831-undefined
[7]  
Porrati M(2003)An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential Int. J. Mod. Phys. A 18 2541-undefined
[8]  
Zaffaroni A(2003)Multiinstanton calculus and equivariant cohomology JHEP 05 054-undefined
[9]  
Goddard P(2004)Multi instanton calculus on ALE spaces Nucl. Phys. B 703 518-undefined
[10]  
Nuyts J(2012)Exceptional indices JHEP 05 145-undefined