In this article, we study the blow-up properties of solutions to a parabolic problem with a gradient nonlinearity under homogeneous Dirichlet boundary conditions. By constructing an auxiliary function and by modifying the first order differential inequality, we obtain lower bounds for the blow-up time of solutions in LkΩ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{k}\left( \Omega \right)$$\end{document}k>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( k>1\right)$$\end{document} norm and conditions which ensure that blow-up cannot occur.