Permanence and global attractivity of a discrete semi-ratio dependent predator-prey system with Holling II type functional response

被引:20
作者
Lu C. [1 ]
Zhang L. [1 ]
机构
[1] Department of Mathematics, Qingdao Technological University
关键词
Discrete; Global stability; Periodic solution; Permanence;
D O I
10.1007/s12190-009-0277-y
中图分类号
学科分类号
摘要
In this paper, we propose a discrete semi-ratio dependent predator-prey system with Holling II type functional response. For general nonautonomous case, sufficient conditions which ensure the permanence and the global stability of the system are obtained; for periodic case, sufficient conditions which ensure the existence of a globally stable positive periodic solution of the system are obtained. © 2009 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:125 / 135
页数:10
相关论文
共 13 条
[1]  
Chen F.D., Permance and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems, Appl. Math. Comput., 59, pp. 804-814, (1991)
[2]  
Saito Y., Ma W., Hara T., A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays, Journal of Mathematical Analysis and Applications, 256, 1, pp. 162-174, (2001)
[3]  
Fan M., Wang K., Periodic solution of a discrete time nonautonomous ratio-dependent predator-prey system, Math. Comput. Model., 35, pp. 951-961, (2002)
[4]  
Berryman A.A., The origins and evolution of predator-prey theory, Ecology, 75, pp. 1530-1535, (1992)
[5]  
Huo H.-F., Li W.-T., Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model, Mathematical and Computer Modelling, 40, 3-4, pp. 261-269, (2004)
[6]  
Yang X., Uniform persistence and periodic solutions for a discrete predator-prey system with delays, Journal of Mathematical Analysis and Applications, 316, 1, pp. 161-177, (2006)
[7]  
Fan Y.-H., Li W.-T., Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications, 299, 2, pp. 357-374, (2004)
[8]  
Fan M., Wang Q., Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems, Discrete Contin. Dyn. Syst. Ser. B, 4, pp. 563-574, (2004)
[9]  
Wang Q., Fan M., Wang K., Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functional responses, Journal of Mathematical Analysis and Applications, 278, 2, pp. 443-471, (2003)
[10]  
Arrowsmith D.K., Place C.M., Dynamical Systems, (1992)