Subspace dual and orthogonal frames by action of an abelian group

被引:2
作者
Sarkar, Sudipta [1 ]
Shukla, Niraj K. [1 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Khandwa Rd, Indore 453552, India
关键词
Locally compact group; Zak transform; Translation invariant system; Subspace dual and orthogonal frames; Biorthogonal system; INVARIANT-SYSTEMS; GABOR FRAMES; TRANSLATION; REPRESENTATIONS; SPACES; PAIR;
D O I
10.1007/s11868-024-00594-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of a locally compact group G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}.$$\end{document} These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair (G,Gamma).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathscr {G}}, \Gamma ).$$\end{document} We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p-adic fields Qp,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}} p,$$\end{document} locally compact abelian groups using the fiberization map.
引用
收藏
页数:33
相关论文
共 50 条
[31]   On matrix-valued Gabor frames over locally compact abelian groups [J].
Sinha, Uttam Kumar ;
Vashisht, Lalit Kumar ;
Das, Pankaj Kumar .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2023, 26 (04)
[32]   Characterizations of dual multiwavelet frames of periodic functions [J].
Atreas, Nikolaos D. .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (03)
[33]   On extensions of wavelet systems to dual pairs of frames [J].
Christensen, Ole ;
Kim, Hong Oh ;
Kim, Rae Young .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (02) :489-503
[34]   Extensions of Bessel sequences to dual pairs of frames [J].
Christensen, Ole ;
Kim, Hong Oh ;
Kim, Rae Young .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (02) :224-233
[35]   Operator-Valued Frames for the Heisenberg Group [J].
Robinson, Benjamin ;
Moran, William ;
Cochran, Douglas ;
Howard, Stephen D. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (06) :1384-1397
[36]   Operator-Valued Frames for the Heisenberg Group [J].
Benjamin Robinson ;
William Moran ;
Douglas Cochran ;
Stephen D. Howard .
Journal of Fourier Analysis and Applications, 2015, 21 :1384-1397
[37]   Gabor Duals for Operator-valued Gabor Frames on Locally Compact Abelian Groups [J].
Hu, Y. ;
Li, P. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (06) :328-338
[38]   Oblique dual and g-dual frames in separable quaternionic Hilbert spaces [J].
Tian, Yu ;
Zhang, Wei .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (04)
[39]   Some Properties of Approximately Dual Frames in Hilbert Spaces [J].
Javanshiri, Hossein .
RESULTS IN MATHEMATICS, 2016, 70 (3-4) :475-485
[40]   Optimal Dual Frames for Communication Coding With Probabilistic Erasures [J].
Leng, Jinsong ;
Han, Deguang ;
Huang, Tingzhu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (11) :5380-5389