Subspace dual and orthogonal frames by action of an abelian group

被引:2
作者
Sarkar, Sudipta [1 ]
Shukla, Niraj K. [1 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Khandwa Rd, Indore 453552, India
关键词
Locally compact group; Zak transform; Translation invariant system; Subspace dual and orthogonal frames; Biorthogonal system; INVARIANT-SYSTEMS; GABOR FRAMES; TRANSLATION; REPRESENTATIONS; SPACES; PAIR;
D O I
10.1007/s11868-024-00594-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of a locally compact group G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}.$$\end{document} These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair (G,Gamma).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathscr {G}}, \Gamma ).$$\end{document} We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p-adic fields Qp,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}} p,$$\end{document} locally compact abelian groups using the fiberization map.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] SPARSE DUAL FRAMES IN COMPRESSED SENSING
    Li, Shidong
    Mi, Tiebin
    Liu, Yulong
    WAVELETS AND SPARSITY XIV, 2011, 8138
  • [22] Construction of approximate dual wavelet frames
    Feichtinger, Hans G.
    Onchis, Darian M.
    Wiesmeyr, Christoph
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (01) : 273 - 282
  • [23] Optimal dual frames for erasures II
    Leng, Jinsong
    Han, Deguang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1464 - 1472
  • [24] Finite Dual g-Framelet Systems Associated with an Induced Group Action
    Gumber, Anupam
    Shukla, Niraj K.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (07) : 2993 - 3021
  • [25] Arens regularity of ideals of the group algebra of a compact Abelian group
    Esmailvandi, Reza
    Filali, Mahmoud
    Galindo, Jorge
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [26] DUAL HYPERCYCLIC EXTENSION FOR AN OPERATOR ON A HILBERT SUBSPACE
    Chan, Kit C.
    Kadel, Gokul R.
    HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (04): : 1221 - 1256
  • [27] Pairwise orthogonal frames generated by regular representations of LCA groups
    Gumber, Anupam
    Shukla, Niraj K.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 152 : 40 - 60
  • [28] Dual topologies on non-abelian groups
    Ferrer, M. V.
    Hernandez, S.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (09) : 2367 - 2377
  • [29] An Explicit Abelian Surface with Maximal Galois Action
    Greicius, Quinn
    Landesman, Aaron
    EXPERIMENTAL MATHEMATICS, 2022, 31 (02) : 689 - 693
  • [30] Study of trivariate Pseudoframes and Subspace Frames and Their Applications in Solid-state Physics
    Chen, Zhongyin
    Chen, Qingjiang
    ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEM AND MATERIAL ENGINEERING, 2012, 459 : 262 - +