Subspace dual and orthogonal frames by action of an abelian group

被引:2
作者
Sarkar, Sudipta [1 ]
Shukla, Niraj K. [1 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Khandwa Rd, Indore 453552, India
关键词
Locally compact group; Zak transform; Translation invariant system; Subspace dual and orthogonal frames; Biorthogonal system; INVARIANT-SYSTEMS; GABOR FRAMES; TRANSLATION; REPRESENTATIONS; SPACES; PAIR;
D O I
10.1007/s11868-024-00594-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of a locally compact group G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}.$$\end{document} These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair (G,Gamma).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathscr {G}}, \Gamma ).$$\end{document} We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p-adic fields Qp,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}} p,$$\end{document} locally compact abelian groups using the fiberization map.
引用
收藏
页数:33
相关论文
共 50 条
[21]   Approximately dual pairs of wavelet frames [J].
Benavente, Ana ;
Christensen, Ole ;
Hasannasab, Marzieh ;
Kim, Hong Oh ;
Kim, Rae Young ;
Kovac, Federico D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
[22]   Construction of approximate dual wavelet frames [J].
Feichtinger, Hans G. ;
Onchis, Darian M. ;
Wiesmeyr, Christoph .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (01) :273-282
[23]   Optimal dual frames for erasures II [J].
Leng, Jinsong ;
Han, Deguang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) :1464-1472
[24]   Arens regularity of ideals of the group algebra of a compact Abelian group [J].
Esmailvandi, Reza ;
Filali, Mahmoud ;
Galindo, Jorge .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
[25]   Finite Dual g-Framelet Systems Associated with an Induced Group Action [J].
Gumber, Anupam ;
Shukla, Niraj K. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (07) :2993-3021
[26]   DUAL HYPERCYCLIC EXTENSION FOR AN OPERATOR ON A HILBERT SUBSPACE [J].
Chan, Kit C. ;
Kadel, Gokul R. .
HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (04) :1221-1256
[27]   Pairwise orthogonal frames generated by regular representations of LCA groups [J].
Gumber, Anupam ;
Shukla, Niraj K. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 152 :40-60
[28]   An Explicit Abelian Surface with Maximal Galois Action [J].
Greicius, Quinn ;
Landesman, Aaron .
EXPERIMENTAL MATHEMATICS, 2022, 31 (02) :689-693
[29]   Dual topologies on non-abelian groups [J].
Ferrer, M. V. ;
Hernandez, S. .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (09) :2367-2377
[30]   Study of trivariate Pseudoframes and Subspace Frames and Their Applications in Solid-state Physics [J].
Chen, Zhongyin ;
Chen, Qingjiang .
ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEM AND MATERIAL ENGINEERING, 2012, 459 :262-+