Regularized Euler-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} motion of an infinite array of vortex sheets

被引:9
作者
R. E. Caflisch
F. Gargano
M. Sammartino
V. Sciacca
机构
[1] University of California at Los Angeles,Mathematics Department
[2] University of Palermo,Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici
[3] University of Palermo,Department of Mathematics
关键词
Vortex-sheet; Birkhoff–Rott equation; Euler-; regularization; Complex singularities;
D O I
10.1007/s40574-016-0097-6
中图分类号
学科分类号
摘要
We consider the Euler-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} regularization of the Birkhoff–Rott equation and compare its solutions with the dynamics of the non regularized vortex-sheet. For a flow induced by an infinite array of planar vortex-sheets we analyze the complex singularities of the solutions.Through the singularity tracking method we show that the regularized solution has several complex singularities that approach the real axis. We relate their presence to the formation of two high-curvature points in the vortex sheet during the roll-up phenomenon.
引用
收藏
页码:113 / 141
页数:28
相关论文
共 158 条
[1]  
Bailey DH(2013)Lattice sums arising from the Poisson equation J. Phys. A Math. Theor. 46 115201-258
[2]  
Borwein JM(2004)Vortex blob methods applied to interfacial motion J. Comp. Phys. 196 233-75
[3]  
Crandall RE(1993)Singularity formation during Rayleigh–Taylor instability J. Fluid Mech. 252 51-501
[4]  
Zucker IJ(1982)Generalized vortex methods for free-surface flow problems J. Fluid Mech. 123 477-316
[5]  
Baker GR(2006)A comparison of blob methods for vortex sheet roll-up J. Fluid Mech. 547 297-194
[6]  
Beale JT(1990)On the connection between thin vortex layers and vortex sheets J. Fluid Mech. 215 161-1911
[7]  
Baker GR(2008)Global regularity for a Birkhoff–Rott- Phys. D Nonlinear Phenom. 237 1905-746
[8]  
Caflisch RE(2010) approximation of the dynamics of vortex sheets of the 2d Euler equations Commun. Pure Appl. Math. 63 697-168
[9]  
Siegel M(2000)Global regularity and convergence of a Birkhoff–Rott- Math. Methods Appl. Sci. 23 147-1056
[10]  
Baker GR(1992) approximation of the dynamics of vortex sheets of the two-dimensional Euler equations SIAM J. Appl. Math. 52 1041-90