Regular Versus Singular Order of Contact on Pseudoconvex Hypersurfaces

被引:0
作者
J. D. McNeal
L. Mernik
机构
[1] The Ohio State University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2018年 / 28卷
关键词
Finite type; Singular type; Regular type; 32W05;
D O I
暂无
中图分类号
学科分类号
摘要
The singular and regular type of a point on a real hypersurface H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document} in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} are shown to agree when the regular type is strictly less than 4. If H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document} is pseudoconvex, we show they agree when the regular type is 4. A non-pseudoconvex example is given where the regular type is 4 and the singular type is infinite.
引用
收藏
页码:2653 / 2669
页数:16
相关论文
共 5 条