Real-Time Detection of Dictionary DGA Network Traffic Using Deep Learning

被引:0
作者
Highnam K. [1 ]
Puzio D. [2 ]
Luo S. [3 ]
Jennings N.R. [1 ]
机构
[1] Imperial College London, London
[2] Kensho Technologies, McLean, VA
[3] Tencent, Shenzhen
关键词
Botnets; Deep learning; Domain generation algorithm; Malware; Network security; Neural networks;
D O I
10.1007/s42979-021-00507-w
中图分类号
学科分类号
摘要
Botnets and malware continue to avoid detection by static rule engines when using domain generation algorithms (DGAs) for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To combat this, we created a novel hybrid neural network, Bilbo the “bagging” model, that analyses domains and scores the likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique architecture is found to be the most consistent in performance in terms of AUC, F1 score, and accuracy when generalising across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring real-world network logs within a large enterprise. In 4 h of actual network traffic, the model discovered at least five potential command-and-control networks that commercial vendor tools did not flag. © 2021, The Author(s).
引用
收藏
相关论文
共 50 条
  • [21] Using Channel and Network Layer Pruning Based on Deep Learning for Real-Time Detection of Ginger Images
    Fang, Lifa
    Wu, Yanqiang
    Li, Yuhua
    Guo, Hongen
    Zhang, Hua
    Wang, Xiaoyu
    Xi, Rui
    Hou, Jialin
    AGRICULTURE-BASEL, 2021, 11 (12):
  • [22] Graph Spatiotemporal Pattern Learning Network for Real-Time Road Network Traffic Abnormal Incident Detection
    Li, Haitao
    Ma, Yongjian
    Wang, Xin
    Li, Zhihui
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (12) : 815 - 829
  • [23] Real-Time Deep Learning-Based Object Detection Framework
    Tarimo, William
    Sabra, Moustafa M.
    Hendre, Shonan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1829 - 1836
  • [24] Application of Deep Learning Models for Real-Time Automatic Malware Detection
    Gutierrez, Rommel
    Villegas-Ch, William
    Naranjo Godoy, Lorena
    Mera-Navarrete, Aracely
    Lujan-Mora, Sergio
    IEEE ACCESS, 2024, 12 : 107742 - 107756
  • [25] Real-Time Lane Detection Based on Deep Learning
    Sun-Woo Baek
    Myeong-Jun Kim
    Upendra Suddamalla
    Anthony Wong
    Bang-Hyon Lee
    Jung-Ha Kim
    Journal of Electrical Engineering & Technology, 2022, 17 : 655 - 664
  • [26] Potato Beetle Detection with Real-Time and Deep Learning
    Karakan, Abdil
    PROCESSES, 2024, 12 (09)
  • [27] Real-Time Lane Detection Based on Deep Learning
    Baek, Sun-Woo
    Kim, Myeong-Jun
    Suddamalla, Upendra
    Wong, Anthony
    Lee, Bang-Hyon
    Kim, Jung-Ha
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 655 - 664
  • [28] Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain
    Zhang, Qianyun
    Barri, Kaveh
    Babanajad, Saeed K.
    Alavi, Amir H.
    ENGINEERING, 2021, 7 (12) : 1786 - 1796
  • [29] SafeSmartDrive: Real-Time Traffic Environment Detection and Driver Behavior Monitoring With Machine and Deep Learning
    Bouhsissin, Soukaina
    Sael, Nawal
    Benabbou, Faouzia
    Soultana, Abdelfettah
    Jannani, Ayoub
    IEEE ACCESS, 2024, 12 : 169499 - 169517
  • [30] Efficient real-time defect detection for spillway tunnel using deep learning
    Chuncheng Feng
    Hua Zhang
    Yonglong Li
    Shuang Wang
    Haoran Wang
    Journal of Real-Time Image Processing, 2021, 18 : 2377 - 2387