Meromorphic Functions Sharing four Values with their Difference Operators

被引:0
作者
Xiao-Min Li
Yan Liu
Hong-Xun Yi
机构
[1] Ocean University of China,Department of Mathematics
[2] Shandong University,Department of Mathematics
来源
Computational Methods and Function Theory | 2021年 / 21卷
关键词
Nevanlinna’s theory; Difference Nevanlinna’s theory; Meromorphic functions; Uniqueness theorems; Primary 30D35; Secondary 39A05;
D O I
暂无
中图分类号
学科分类号
摘要
In 2011, Heittokangas et al. (Complex Var Ellipt Equat 56(1–4):81–92, 2011) proved that if a non-constant finite order entire function f(z) and f(z+η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z+\eta )$$\end{document} share a, b, c IM, where η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} is a finite non-zero complex number, while a, b, c are three distinct finite complex values, then f(z)=f(z+η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=f(z+\eta )$$\end{document} for all z∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\in \mathbb {C}$$\end{document}. We prove that if a non-constant finite order entire function f and its n-th difference operator Δηnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^n_{\eta }f$$\end{document} share a1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1$$\end{document}, a2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2$$\end{document}, a3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_3$$\end{document} IM, where n is a positive integer, η≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \ne 0$$\end{document} is a finite complex value, while a1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1$$\end{document}, a2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2$$\end{document}, a3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_3$$\end{document} are three distinct finite complex values, then f=Δηnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=\Delta ^n_{\eta }f$$\end{document}. The main results in this paper also improve Theorems 1.1 and 1.2 from Li and Yi (Bull Korean Math Soc 53(4):1213–1235, 2016).
引用
收藏
页码:317 / 341
页数:24
相关论文
共 30 条
  • [1] Adams WW(1971)Non-Archimedian analytic functions taking the same values at the same points Ill. J. Math. 15 418-424
  • [2] Straus EG(2008)On the Nevanlinna characteristic of Ramanujan J. 16 105-129
  • [3] Chiang YM(1983) and difference equations in the complex plane Trans. Am. Math. Soc. 277 545-567
  • [4] Feng SJ(1992)Meromorphic functions that share four values Complex Vari. Theory Appl. 20 99-106
  • [5] Gundersen GG(2006)Meromorphic functions that share three values IM and a fourth value CM Ann. Acad. Sci. Fenn. Math. 31 463-478
  • [6] Gundersen GG(2006)Nevanlinna theory for the difference operator J. Math. Anal. Appl. 314 477-487
  • [7] Halburd RG(2014)Difference analogue of the lemma on the logarithmic derivative with applications to difference equations Trans. Am. Math. Soc. 366 4267-4298
  • [8] Korhonen RJ(2009)Holomorphic curves with shift-invariant hyperplane preimages J. Math. Anal. Appl. 355 352-363
  • [9] Halburd RG(2011)Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity Complex Var. Ellipt. Equat. 56 81-92
  • [10] Korhonen RJ(1997)Uniqueness of meromorphic functions sharing values with their shifts Indian J. Pure Appl. Math. 28 797-811