Optimality and duality for second-order interval-valued variational problems

被引:0
|
作者
Vivek Dhingra
N. Kailey
机构
[1] Thapar Institute of Engineering and Technology,School of Mathematics
关键词
Interval-valued problem; Calculus of variation; Second-order; -Bonnvex functions; Duality theorems; 49N15; 90C26; 90C30; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies the second-order interval-valued variational problem under η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-bonvexity assumptions and proves the necessary optimality conditions. We investigate the functional which is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-bonvex but not invex. Further, we prove the duality theorems i.e. the weak and strong duality theorem to relate the values of the primal problem and dual problem. To validate the credibility of the weak duality theorem, we formulate an example of a second-order interval-valued variational problem.
引用
收藏
页码:3147 / 3162
页数:15
相关论文
共 50 条
  • [21] On interval-valued invex mappings and optimality conditions for interval-valued optimization problems
    Lifeng Li
    Sanyang Liu
    Jianke Zhang
    Journal of Inequalities and Applications, 2015
  • [22] Optimality and Duality for Second-order Multiobjective Variational Problems (vol 3, pg 786, 2010)
    Gulati, T. R.
    Mehndiratta, Geeta
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 4 (03): : 209 - 209
  • [23] Mixed Type Second-Order Duality for Variational Problems
    Husain, I.
    Ahmad, Bilal
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2013, 5 (01): : 1 - 13
  • [24] Duality for Multiobjective Variational Problems under Second-Order (Φ, ρ)-Invexity
    Singh, Vivek
    Ahmad, I
    Gupta, S. K.
    Al-Homidan, S.
    FILOMAT, 2021, 35 (02) : 605 - 615
  • [25] Conditions of Interval-Valued Optimality Problems under Subdifferentiability
    Ouyang, Chenxi
    Qiu, Dong
    Xiao, Jiafeng
    Xiang, Senglin
    IAENG International Journal of Applied Mathematics, 2020, 50 (04)
  • [26] SECOND-ORDER OPTIMALITY CONDITIONS AND DUALITY FOR NONSMOOTH MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Van Luu D.
    Applied Set-Valued Analysis and Optimization, 2022, 4 (01): : 41 - 54
  • [27] Optimality, duality and saddle point analysis for interval-valued nondifferentiable multiobjective fractional programming problems
    Dar, Bilal Ahmad
    Jayswal, Anurag
    Singh, Deepak
    OPTIMIZATION, 2021, 70 (5-6) : 1275 - 1305
  • [28] Duality Theory in Interval-Valued Linear Programming Problems
    Wu, Hsien-Chung
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (02) : 298 - 316
  • [29] Duality Theory in Interval-Valued Linear Programming Problems
    Hsien-Chung Wu
    Journal of Optimization Theory and Applications, 2011, 150 : 298 - 316
  • [30] On sufficiency and duality for a class of interval-valued programming problems
    Jayswal, Anurag
    Stancu-Minasian, Ioan
    Ahmad, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4119 - 4127