Optimality and duality for second-order interval-valued variational problems

被引:0
|
作者
Vivek Dhingra
N. Kailey
机构
[1] Thapar Institute of Engineering and Technology,School of Mathematics
关键词
Interval-valued problem; Calculus of variation; Second-order; -Bonnvex functions; Duality theorems; 49N15; 90C26; 90C30; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies the second-order interval-valued variational problem under η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-bonvexity assumptions and proves the necessary optimality conditions. We investigate the functional which is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-bonvex but not invex. Further, we prove the duality theorems i.e. the weak and strong duality theorem to relate the values of the primal problem and dual problem. To validate the credibility of the weak duality theorem, we formulate an example of a second-order interval-valued variational problem.
引用
收藏
页码:3147 / 3162
页数:15
相关论文
共 50 条
  • [1] Optimality and duality for second-order interval-valued variational problems
    Dhingra, Vivek
    Kailey, N.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (05) : 3147 - 3162
  • [2] Second-order optimality conditions for interval-valued functions
    Ruiz-Garzon, Gabriel
    Osuna-Gomez, Rafaela
    Rufian-Lizana, Antonio
    Beato-Moreno, Antonio
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [3] Second-order optimality conditions for interval-valued functions
    Gabriel Ruiz-Garzón
    Rafaela Osuna-Gómez
    Antonio Rufián-Lizana
    Antonio Beato-Moreno
    Journal of Inequalities and Applications, 2023
  • [4] Optimality and Duality for Second-order Multiobjective Variational Problems
    Gulati, T. R.
    Mehndiratta, Geeta
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (05): : 786 - 805
  • [5] Second-Order Optimality Conditions for Interval-Valued Optimization Problem
    Rastogi, Sachin
    Iqbal, Akhlad
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2024,
  • [6] Second-order duality for the variational problems
    Chen, XH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (01) : 261 - 270
  • [7] Second-Order Duality for Variational Problems
    Husain, I.
    Ahmed, A.
    Masoodi, Mashoob
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2009, 2 (02): : 278 - 295
  • [8] Second-order necessary and sufficient optimality conditions for multiobjective interval-valued nonlinear programming
    Tung, Le Thanh
    APPLICABLE ANALYSIS, 2025, 104 (04) : 691 - 718
  • [9] Optimality and duality in constrained interval-valued optimization
    Do Van Luu
    Tran Thi Mai
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2018, 16 (03): : 311 - 337
  • [10] Optimality conditions and duality for interval-valued optimization problems using convexifactors
    Jayswal A.
    Stancu-Minasian I.
    Banerjee J.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2016, 65 (1): : 17 - 32