Anti-Ramsey coloring for matchings in complete bipartite graphs

被引:0
作者
Zemin Jin
Yuping Zang
机构
[1] Zhejiang Normal University,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 33卷
关键词
Anti-Ramsey number; Matching; Rainbow; 05C15; 05C35; 05C55; 05C70; 05D10;
D O I
暂无
中图分类号
学科分类号
摘要
The anti-Ramsey number AR(G, H) is defined to be the maximum number of colors in an edge coloring of G which doesn’t contain any rainbow subgraphs isomorphic to H. It is clear that there is an AR(Km,n,kK2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AR(K_{m,n},kK_2)$$\end{document}-edge-coloring of Km,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{m,n}$$\end{document} that doesn’t contain any rainbow kK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$kK_2$$\end{document}. In this paper, we show the uniqueness of this kind of AR(Km,n,kK2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AR(K_{m,n},kK_2)$$\end{document}-edge-coloring of Km,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{m,n}$$\end{document}.
引用
收藏
页码:1 / 12
页数:11
相关论文
共 37 条
  • [1] Alon N(1983)On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems J Graph Theory 1 91-94
  • [2] Axenovich M(2004)Anti-Ramsey numbers for small complete bipartite graphs Ars Comb 73 311-318
  • [3] Jiang T(2004)Bipartite anti-Ramsey numbers of cycles J Graph Theory 47 9-28
  • [4] Axenovich M(2009)Complete solution for the rainbow numbers of matchings Discret Math 309 3370-3380
  • [5] Jiang T(2010)Rainbow generalizations of Ramsey theory: a survey Graphs Comb 26 1-30
  • [6] Kündgen A(2002)Edge-colorings with no large polychromatic stars Graphs Comb 18 303-308
  • [7] Chen H(2002)Anti-Ramsey numbers of subdivided graphs J Comb Theory Ser B 85 361-366
  • [8] Li XL(2003)On the Erdős–Simonovits–Sós conjecture on the anti-Ramsey number of a cycle Comb Probab Comput 12 585-598
  • [9] Tu JH(2004)Edge-colorings of complete graphs that avoid polychromatic trees Discret Math 274 137-145
  • [10] Fujita S(2013)Edge-colorings of complete bipartite graphs without large rainbow trees Ars Comb 111 75-84