Kähler-Einstein metrics with positive scalar curvature

被引:0
作者
Gang Tian
机构
[1] Department of Mathematics,
[2] Massachusetts Institute of Technology,undefined
[3] Cambridge,undefined
[4] MÁ 02139-4307,undefined
[5] USA (e-mail: tian@math.mit.edu),undefined
来源
Inventiones mathematicae | 1997年 / 130卷
关键词
Manifold; Vector Field; Analytic Criterion; Scalar Curvature; Chern Class;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that the existence of Kähler-Einstein metrics implies the stability of the underlying Kähler manifold in a suitable sense. In particular, this disproves a long-standing conjecture that a compact Kähler manifold admits Kähler-Einstein metrics if it has positive first Chern class and no nontrivial holomorphic vector fields. We will also establish an analytic criterion for the existence of Kähler-Einstein metrics. Our arguments also yield that the analytic criterion is satisfied on stable Kähler manifolds, provided that the partial C0-estimate posed in [T6] is true.
引用
收藏
页码:1 / 37
页数:36
相关论文
empty
未找到相关数据