Discreteness criteria forRP groups

被引:0
作者
E. Klimenko
N. Kopteva
机构
[1] Technion-Israel Institute of Technology,Department of Mathematics
[2] Northwestern University,Department of Mathematics
[3] Heriot-Watt University,Department of Mathematics
来源
Israel Journal of Mathematics | 2002年 / 128卷
关键词
Dihedral Angle; Discrete Group; Elliptic Generator; Kleinian Group; Invariant Plane;
D O I
暂无
中图分类号
学科分类号
摘要
Recently Gehring, Gilman, and Martin introduced an important class of two-generator groups with real parameters:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {\Gamma = \left\langle {f,g} \right\rangle \left| {f,g \in PSL(2,C);\beta ,\beta ^\prime ,\gamma \in R} \right.} \right\}$$ \end{document} whereβ=tr2f−4,β′=tr2g−4, and γ=tr(fgf−1g−1)−2. The groups that belong to this class we callRP groups. We find criteria for discreteness ofRP groups generated by a hyperbolic element and an elliptic one of even order with intersecting axes.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 30 条
[1]  
Epstein D. B. A.(1994)An exposition of Poincaré’s polyhedron theorem L’Enseignement Mathématique 40 113-170
[2]  
Petronio C.(1998)Coxeter decompositions of hyperbolic polygons European Journal of Combinatorics 19 801-817
[3]  
Felikson A. A.(2001)Kleinian groups with real parameters Communications in Contemporary Mathematics 3 163-186
[4]  
Gehring F. W.(1989)Stability and extremality in Jørgensen’s inequality Complex Variables. Theory and Application 12 277-282
[5]  
Gilman J. P.(1994)Commutators, collars and the geometry of Möbius groups Journal d’Analyse Mathématique 63 175-219
[6]  
Martin G. J.(1995)Two-generator discrete subgroups of PSL(2 Memoirs of the American Mathematical Society 117 561-32
[7]  
Gehring F. W.(1991)An algorithm for 2-generator Fuchsian groups The Michigan Mathematical Journal 38 13-412
[8]  
Martin G. J.(1995)On discrete generalized triangle groups Proceedings of the Edinburgh Mathematical Society 38 397-749
[9]  
Gehring F. W.(1976)On discrete groups of Möbius transformations American Journal of Mathematics 98 739-212
[10]  
Martin G. J.(1977) SL(2, The Quarterly Journal of Mathematics. Oxford 28 209-100