Learning cross-domain representations by vision transformer for unsupervised domain adaptation

被引:2
|
作者
Ye, Yifan [1 ]
Fu, Shuai [1 ]
Chen, Jing [1 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect, Xiaoguwei St, Guangzhou 510000, Guangdong, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 15期
关键词
Transfer learning; Unsupervised domain adaptation; Transformer; Cross-domain representations;
D O I
10.1007/s00521-023-08269-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Domain Adaptation (UDA) is a popular machine learning technique to reduce the distribution discrepancy among domains. Generally, most UDA methods utilize a deep Convolutional Neural Networks (CNNs) and a domain discriminator to learn a domain-invariant representation, but it does not equal to a discriminative domain-specific representation. Transformers (TRANS), which has been proved to be more robust to domain shift than CNNs, has gradually become a powerful alternative to CNNs in feature representation. On the other hand, the domain shift between the labeled source data and the unlabeled target data produces a significant amount of label noise, which needs a more robust connection between the source and target domain. This report proposes a simple yet effective UDA method for learning cross-domain representations by vision Transformers in a self-training manner. Unlike the conventional form of dividing an image into multiple non-overlapping patches, we proposed a novel method that aggregates both source domain labeled patches and target domain pseudo-labeled target patches. In addition, a cross-domain alignment loss is proposed to match the centroid of labeled source patches and pseudo-labeled target patches. Extensive experiments show that our proposed method achieves state-of-the-art (SOTA) results on several standard UDA benchmarks (90.5% on ImageCLEF-DA, Office31) by a transformers baseline model without any extra assistant networks.
引用
收藏
页码:10847 / 10860
页数:14
相关论文
共 50 条
  • [31] Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
    Gao, Huan
    Guo, Jichang
    Wang, Guoli
    Zhang, Qian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9903 - 9913
  • [32] Unsupervised Adversarial Domain Adaptation for Cross-Domain Face Presentation Attack Detection
    Wang, Guoqing
    Han, Hu
    Shan, Shiguang
    Chen, Xilin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 56 - 69
  • [33] DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation
    Lee, Seunghun
    Cho, Sunghyun
    Im, Sunghoon
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15247 - 15256
  • [34] Cross-Domain Visual Representations via Unsupervised Graph Alignment
    Yang, Baoyao
    Yuen, Pong C.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5613 - 5620
  • [35] Crowd Counting via Unsupervised Cross-Domain Feature Adaptation
    Ding, Guanchen
    Yang, Daiqin
    Wang, Tao
    Wang, Sihan
    Zhang, Yunfei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4665 - 4678
  • [36] Balanced Adaptation Regularization Based Transfer Learning for Unsupervised Cross-Domain Fault Diagnosis
    Hu, Qin
    Si, Xiaosheng
    Qin, Aisong
    Lv, Yunrong
    Liu, Mei
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12139 - 12151
  • [37] Unsupervised Energy-based Adversarial Domain Adaptation for Cross-domain Text Classification
    Zou, Han
    Yang, Jianfei
    Wu, Xiaojian
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1208 - 1218
  • [38] Unsupervised domain adaptation segmentation algorithm with cross-domain data augmentation and category contrast
    Dong, Wenyong
    Liang, Zhixue
    Wang, Liping
    Tian, Gang
    Long, Qianhui
    NEUROCOMPUTING, 2025, 623
  • [39] UDA-FlyRecog: Unsupervised domain adaptation for drosophila cross-domain recognition model
    Deng, Hong
    Cai, Xin
    Yin, ChengLe
    Gao, XueShun
    Hu, Chang
    He, WenJie
    Peng, YingQiong
    JOURNAL OF STORED PRODUCTS RESEARCH, 2023, 104
  • [40] CONNECTING THE DOTS WITHOUT CLUES: UNSUPERVISED DOMAIN ADAPTATION FOR CROSS-DOMAIN VISUAL CLASSIFICATION
    Chen, Wei-Yu
    Hsu, Tzu-Ming Harry
    Hou, Cheng-An
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3997 - 4001