Agile convolutional neural network for pulmonary nodule classification using CT images

被引:0
作者
Xinzhuo Zhao
Liyao Liu
Shouliang Qi
Yueyang Teng
Jianhua Li
Wei Qian
机构
[1] Northeastern University,Sino
[2] College of Engineering,Dutch Biomedical and Information Engineering School
[3] University of Texas at El Paso,undefined
来源
International Journal of Computer Assisted Radiology and Surgery | 2018年 / 13卷
关键词
Lung cancer; Nodule classification; Deep learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:585 / 595
页数:10
相关论文
共 186 条
[1]  
Siegel R(2013)Cancer statistics CA-Cancer J Clin 63 11-30
[2]  
Naishadham D(2015)Cancer statistics in China CA-Cancer J Clin 66 115-132
[3]  
Jemal A(2016)Automatic 3D pulmonary nodule detection in CT images: a survey Comput Methods Prog Biomed 124 91-107
[4]  
Chen D(2015)Non-small-cell lung cancer Nat Rev Dis Primers 2 N1-942353
[5]  
Zheng R(2013)Computer-aided diagnosis systems for lung cancer: challenges and methodologies Int J Biomed Imaging 1 942353-211
[6]  
Peter D(2007)Computer-aided diagnosis in medical imaging: historical review, current status and future potential Comput Med Imag Gr 31 198-1159
[7]  
Baade PD(2015)Machine learning methods for quantitative radiomic biomarkers Sci Rep 5 13087-444
[8]  
Zhang S(2015)Radiomics: images are more than pictures, they are data Radiology 278 563-2324
[9]  
Zeng H(2016)Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique IEEE Trans Med Imaging 35 1153-2022
[10]  
Bray F(2015)Deep learning Nature 521 436-138