Time-periodic solution to the compressible viscous quantum magnetohydrodynamic model

被引:0
作者
Ying Yang
Yu Zhou
Qiang Tao
机构
[1] Shenzhen University,College of Mathematics and Statistics
[2] Shenzhen University,Shenzhen Key Laboratory of Advanced Machine Learning and Applications
来源
Zeitschrift für angewandte Mathematik und Physik | 2020年 / 71卷
关键词
Viscous quantum; Magnetohydrodynamic model; Time-periodic solution; Topological degree theory; 35Q35; 35Q40; 35B10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the time-periodic solution to the compressible viscous quantum magnetohydrodynamic model in a periodic domain is studied. Under the boundedness assumption on the external force, we prove the existence of the time-periodic solution by using the topological degree theory and parabolic regularization method. Furthermore, the uniqueness of the time-periodic solution is shown.
引用
收藏
相关论文
共 42 条
  • [1] Cai H(2015)Periodic solutions to the compressible magnetohydrodynamic equations in a periodic domain J. Math. Anal. Appl. 426 172-193
  • [2] Tan Z(2019)Global stability of large solutions of the Nonlinear Anal. Real World Appl. 47 272-290
  • [3] Chen YH(2011)-D compressible magnetohydrodynamic equations Math. Methods Appl. Sci. 34 2181-2188
  • [4] Huang JC(2005)Low Mach number limit of the compressible magnetohydrodynamic equations with zero thermal conductivity coefficient Phys. Plasmas 12 062117-062126
  • [5] Xu HY(2015)A magnetohydrodynamic model for quantum plasmas J. Differ. Equ. 259 2576-2601
  • [6] Fana JS(2014)Time periodic solution for a 3-D compressible Navier-Stokes system with an external force in Adv. Math. 259 384-420
  • [7] Gao HJ(2014)Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data Nonlinearity 27 2909-2935
  • [8] Guo BL(2017)Existence and regularity of time-periodic solutions to the three-dimensional Navier-Stokes equations in the whole space J. Math. Anal. Appl. 452 1209-1228
  • [9] Haas F(2016)Global existence and large time behavior of solutions for compressible quantum magnetohydrodynamics flows in Nonlinear Anal. Real World Appl. 31 409-430
  • [10] Jin CH(2019)On local strong solutions to the Cauchy problem of the two-dimensional full compressible magnetohydrodynamic equations with vacuum and zero heat conduction J. Differ. Equ. 267 3827-3851