The p-harmonic approximation and the regularity of p-harmonic maps

被引:0
|
作者
Frank Duzaar
Giuseppe Mingione
机构
[1] Mathematisches Institut der Friedrich-Alexander-Universität zu Nürnberg-Erlangen,Dipartimento di Matematica
[2] Universitá,undefined
来源
Calculus of Variations and Partial Differential Equations | 2004年 / 20卷
关键词
Harmonic Function; Elliptic System; Degenerate Case; Harmonic Approximation; Regularity Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We extend to the degenerate case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\not = 2$\end{document}, Simon’s approach to the classical regularity theory of harmonic maps of Schoen & Uhlenbeck, by proving a “p-Harmonic Approximation Lemma”. This allows to approximate functions with p-harmonic functions in the same way as the classical harmonic approximation lemma (going back to De Giorgi) does via harmonic functions. Finally, we show how to combine this tool with suitable regularity estimates for solutions to degenerate elliptic systems with a critical growth right hand side, in order to obtain partial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{1,\alpha}$\end{document}-regularity of p-harmonic maps.
引用
收藏
页码:235 / 256
页数:21
相关论文
共 50 条