Total Domination on Tree Operators

被引:0
作者
Sergio Bermudo
机构
[1] Universidad Pablo de Olavide,Department of Economics, Quantitative Methods and Economic History
来源
Mediterranean Journal of Mathematics | 2023年 / 20卷
关键词
Total domination; graph operation; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V and edge set E, a set D⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\subseteq V$$\end{document} is a total dominating set if every vertex v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document} has at least one neighbor in D. The minimum cardinality among all total dominating sets is called the total domination number, and it is denoted by γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}(G)$$\end{document}. Given an arbitrary tree graph T, we consider some operators acting on this graph; S(T),R(T),Q(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {S}(T),\texttt {R}(T),\texttt {Q}(T)$$\end{document} and T(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {T}(T)$$\end{document}, and we give bounds of the total domination number of these new graphs using other parameters in the graph T. We also give the exact value of the total domination number in some of them.
引用
收藏
相关论文
共 29 条
  • [1] Basilio LA(2020)The differential on graph operator Simmetry 12 1-8
  • [2] Castro J(2016)Zagreb polynomials of three graph operators Filomat 30 1979-1986
  • [3] Leaños J(2019)On computational and combinatorial properties of the total co-independent domination number of graphs Comput. J. 62 97-108
  • [4] Rosario O(1960)Some properties of line digraphs Rendiconti del Circolo Matematico di Palermo 9 161-168
  • [5] Bindusree AR(2004)Total domination numbers of cartesian products Math. Commun. 9 35-44
  • [6] Naci Cangul I(1943)Démonstration nouvelle d’un théoréme de Whitney sur les réseaux Matematikai és Fizikai Lapok 50 75-85
  • [7] Lokesha V(2018)Hyperbolicity on graph operators Symmetry 10 360-10
  • [8] Sinan Cevik A(2010)Smarandache-Zagreb index on three graph operators Int. J. Math. Combin. 3 1-6551
  • [9] Cabrera A(2021)Total domination on some graph operators Mathematics 9 241-295
  • [10] Hernández-Mira Frank A(2012)Total co-independent domination in graphs Appl. Math. Sci. 6 6545-undefined