An improvement of the infinity norm bound for the inverse of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{P_{1},P_{2}\}$\end{document}-Nekrasov matrices

被引:0
|
作者
Yaqiang Wang
Lei Gao
机构
[1] Baoji University of Arts and Sciences,School of Mathematics and Information Science
关键词
Infinity norm; -Nekrasov matrices; -matrices; 15A60; 15A45; 65F35;
D O I
10.1186/s13660-019-2134-3
中图分类号
学科分类号
摘要
A new upper bound for the infinity norm for the inverse of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{P_{1},P _{2}\}$\end{document}-Nekrasov matrices is given. It is proved that the upper bound is sharper than those in Cvetković et al. (Open Math. 13:96–105, 2015) and than well-known Varah’s bound for strictly diagonally dominant matrices. Numerical examples are given to illustrate the corresponding results.
引用
收藏
相关论文
共 24 条