An improvement of the infinity norm bound for the inverse of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{P_{1},P_{2}\}$\end{document}-Nekrasov matrices

被引:0
作者
Yaqiang Wang
Lei Gao
机构
[1] Baoji University of Arts and Sciences,School of Mathematics and Information Science
关键词
Infinity norm; -Nekrasov matrices; -matrices; 15A60; 15A45; 65F35;
D O I
10.1186/s13660-019-2134-3
中图分类号
学科分类号
摘要
A new upper bound for the infinity norm for the inverse of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{P_{1},P _{2}\}$\end{document}-Nekrasov matrices is given. It is proved that the upper bound is sharper than those in Cvetković et al. (Open Math. 13:96–105, 2015) and than well-known Varah’s bound for strictly diagonally dominant matrices. Numerical examples are given to illustrate the corresponding results.
引用
收藏
相关论文
共 40 条
[1]  
Cvetković L.(2006)-Matrix theory vs. eigenvalue localization Numer. Algorithms 42 229-245
[2]  
Cvetković L.(2013)Infinity norm bounds for the inverse of Nekrasov matrices Appl. Math. Comput. 219 5020-5024
[3]  
Dai P.F.(2011)A simple generalization of Gers̆gorin’s theorem Adv. Comput. Math. 35 271-280
[4]  
Doroslovačkic K.(2012)Max-norm bounds for the inverse of Appl. Math. Comput. 218 9498-9503
[5]  
Li Y.T.(2015)-Nekrasov matrices Open Math. 13 96-105
[6]  
Cvetković L.(2013)Generalizations of Nekrasov matrices and applications Zap. Nauč. Semin. POMI 419 111-120
[7]  
Kostić V.(2015)On bounding inverse to Nekrasov matrices in the infinity norm Adv. Comput. Math. 41 55-75
[8]  
Bru R.(2016)On general principles of eigenvalue localizations via diagonal dominance Numer. Linear Algebra Appl. 23 356-372
[9]  
Pedroche F.(2019)Pseudospectra localizations and their applications Linear Algebra Appl. 565 99-122
[10]  
Cvetković L.(2017)An infinity norm bound for the inverse of Dashnic–Zusmanovich type matrices with applications Numer. Algorithms 74 997-1009