A Time-Free Assumption for Solving Signature-Free Asynchronous Multivalued Byzantine Consensus

被引:0
作者
Abderafik Nezzar
Hamouma Moumen
Chafik Arar
机构
[1] LAMIE,Department of Computer Science
[2] University of Batna 2,undefined
来源
International Journal of Networked and Distributed Computing | 2023年 / 11卷
关键词
Asynchronous distributed system; Byzantine process; Consensus; Signature-free; Eventually winning link; Fault tolerance; Distributed algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper tackles the asynchronous signature-free Byzantine consensus. One way to circumvent the FLP impossibility result consists in adding a Time-free assumption. This assumption is based on the pattern of messages that are exchanged. In the context of authenticated asynchronous Byzantine systems where at most t processes may exhibit a Byzantine behavior, Moumen and Mostéfaoui provide the main result. They assume at least one correct process pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_i$$\end{document}, called ⋄⟨t+1⟩-winning\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\diamond \langle t+1\rangle \text {-winning}$$\end{document}, and a set Q of t correct processes such that, eventually, for each query issued by pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_i$$\end{document}, any process pj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j$$\end{document} of Q receives a response from pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_i$$\end{document} among the (n-t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-t)$$\end{document} first responses to that query. The main contribution of this paper is to show that a deterministic solution for the Signature-free Byzantine consensus problem is possible if the system model satisfies an additional assumption that relies on the pattern of exchanged messages. To solve the Consensus problem, we assume a correct process pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_i$$\end{document}, called ⋄⟨2t+1⟩-winning\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\diamond \langle 2t+1\rangle \text {-winning}$$\end{document}, and a set Q of (2t+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2t+1)$$\end{document} correct processes (including pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_i$$\end{document} itself) such that, eventually, for each query issued by pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_i$$\end{document}, any process pj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j$$\end{document} of Q receives a response from pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_i$$\end{document} among the (n-t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n - t)$$\end{document} first responses to that query. The processes of the set Q may change over time. Based on this assumption, a Signature-free Multivalued Byzantine consensus protocol is proposed. Whereas many time-free protocols have been designed for the consensus problem in the crash model and in the Byzantine Authenticated model, this is, to our knowledge, the first time-free deterministic solution to the Signature-free Byzantine consensus Problem.
引用
收藏
页码:49 / 59
页数:10
相关论文
共 26 条
[1]  
Bracha G(1985)Asynchronous consensus and broadcast protocols J ACM 32 225-267
[2]  
Toueg S(1996)Unreliable failure detectors for reliable distributed systems J ACM 43 288-323
[3]  
Chandra TD(1988)Consensus in the presence of partial synchrony J ACM 35 374-382
[4]  
Toueg S(1985)Impossibility of distributed consensus with one faulty process J ACM 32 382-401
[5]  
Dwork C(1982)The Byzantine generals problem ACM Trans Program Lang Syst 4 189-208
[6]  
Lynch NA(2006)A time-free assumption to implement eventual leadership Parallel Process Lett 16 228-234
[7]  
Stockmeyer L(1980)Reaching agreement in the presence of faults J ACM 27 73-89
[8]  
Fischer MJ(2020)A hybrid protocol to solve authenticated byzantine consensus Fundamentae Informaticae 173 29-47
[9]  
Lynch N(2009)The theta-model: achieving synchrony without clocks Distrib Comput 22 undefined-undefined
[10]  
Paterson MS(undefined)undefined undefined undefined undefined-undefined