Global Bifurcations of Periodic solutions of the Hill Lunar Problem*

被引:0
作者
A.J. Maciejewski
S.M. Rybicki
机构
来源
Celestial Mechanics and Dynamical Astronomy | 2001年 / 81卷
关键词
autonomous Hamiltonian systems; bifurcation index; global bifurcations of periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We describe global bifurcations of non-stationary periodic solutions of the Hill Lunar Problem. Especially we are interested in description of closed connected sets (continua) of non-stationary periodic solutions which bifurcate from stationary ones. Such continua of solutions of the Hill Lunar Problem are not admissible in H12π \ Λ(H). For the Regularized Hill Lunar Problem we prove that these families are unbounded in H12π. As the main tool we use degree theory for SO(2)-equivariant orthogonal maps defined by S.M. Rybicki.
引用
收藏
页码:279 / 297
页数:18
相关论文
共 24 条
[1]  
Dancer E. N.(1985)A new degree for Ann. Inst. H. Poincaré, Analyse Nonlinéaire 2 473-486
[2]  
Dancer E. N.(1999)1-invariant mappings and applications Diff. Int. Eq. 12 147-160
[3]  
Rybicki S.(1999)A note on periodic solutions of autonomous Hamiltonian systems emanating from degenerate stationary solutions Stud. Math 134 217-233
[4]  
Gęba K.(1992)'The conley index in Hilbert spaces and its applications' Momoirs AMS 100 481-238
[5]  
Izydorek M.(1974)Degree theory for equivariant maps the general SO Celest. Mech. 9 213-156
[6]  
Pruszko A.(1999)2 J. Diff. Eq. 154 140-1146
[7]  
Ize J.(1998)-action Rev. Math. Phys. 10 1125-272
[8]  
Massabo I.(1970)Canonical forms for symplectic and Hamiltonian matrices J. Diff. Eq. 44 283-569
[9]  
Vignoli A.(1998)Bridges between the generalized Sitnikov family and the lyapunov family of periodic orbits Nonl. Anal. TMA 34 537-417
[10]  
Laub A. J.(1997)Global bifurcations of periodic solutions of Hénon-Heiles system via degree for Top. Meth. Nonl. Anal. 9 383-32