Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor

被引:0
作者
Zouhair Hanani
Daoud Mezzane
M’barek Amjoud
Anna G. Razumnaya
Sébastien Fourcade
Yaovi Gagou
Khalid Hoummada
Mimoun El Marssi
Mohamed Gouné
机构
[1] LMCN,Faculty of Physics
[2] Cadi Ayyad University,undefined
[3] ICMCB,undefined
[4] University of Bordeaux,undefined
[5] Southern Federal University,undefined
[6] LPMC,undefined
[7] University of Picardy Jules Verne,undefined
[8] IM2NP,undefined
[9] Aix Marseille University,undefined
[10] UMR 7334,undefined
来源
Journal of Materials Science: Materials in Electronics | 2019年 / 30卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) ceramic exhibits excellent dielectric, ferroelectric and piezoelectric properties at the morphotropic phase boundary (MPB). Previously, we demonstrated that the use of the anionic surfactant sodium dodecyl sulfate (SDS, NaC12H25SO4) could enhance the dielectric properties of BCZT ceramic using surfactant-assisted solvothermal processing [1]. In the present study, structural, dielectric, ferroelectric properties, as well as electrocaloric effect and energy storage performances of this BCZT ceramic were thoroughly investigated. X-ray diffraction (XRD) measurements revealed the presence of single perovskite phase at room temperature with the coexistence of orthorhombic and tetragonal symmetries. In-situ Raman spectroscopy results confirmed the existence of all phase transitions from rhombohedral through orthorhombic and tetragonal to cubic symmetries when the temperature varies as reported in undoped-BaTiO3. Evolution of energy storage performances with temperature have been investigated. BCZT ceramic exhibits a high energy storage efficiency of ~ 80% at 120 °C. In addition, the electrocaloric responsivity was found to be 0.164 × 10−6 K·m/V at 363 K.
引用
收藏
页码:6430 / 6438
页数:8
相关论文
共 274 条
[1]  
Hanani Z(2018)undefined Superlattices Microstruct 102 092903-undefined
[2]  
Mezzane D(2013)undefined Appl. Phys. Lett. 116 164107-undefined
[3]  
Amjoud M(2014)undefined J. Appl. Phys. 3 064018-undefined
[4]  
Fourcade S(2015)undefined Phys. Rev. Appl. 474 128-undefined
[5]  
Razumnaya AG(2015)undefined Ferroelectrics 35 1785-undefined
[6]  
Luk’yanchuk IA(2015)undefined J. Eur. Ceram. Soc. 48 2151-undefined
[7]  
Gouné M(2013)undefined J. Mater. Sci. 106 042902-undefined
[8]  
Keeble DS(2015)undefined Appl. Phys. Lett. 133 46147-undefined
[9]  
Benabdallah F(2016)undefined J. Appl. Polym. Sci. 113 214107-undefined
[10]  
Thomas PA(2013)undefined J. Appl. Phys. 125 177-undefined