Rolling bearing fault diagnosis algorithm using overlapping group sparse-deep complex convolutional neural network

被引:0
|
作者
Fengping An
Jianrong Wang
机构
[1] Huaiyin Normal University,School of Physics and Electronic Electrical Engineering
[2] Beijing Institute of Technology,School of Mathematical Sciences
[3] Shanxi University,undefined
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Fault diagnosis; Rolling bearing; Overlapping group sparse; Deep complex convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
As the key component of a mechanical system, rolling bearings will cause paralysis of the entire mechanical system once they fail. In recent years, considering the high generalization ability and nonlinear modeling ability of deep learning, rolling bearing fault diagnosis methods based on deep learning have been developed, and good results have been achieved. However, because this kind of method is still in the initial development stage, its main problems are as follows. First, it is difficult to extract the composite fault signal feature of rolling bearings. Second, the existing deep learning rolling bearing fault diagnosis methods cannot address the problem of multi-scale information of rolling bearing signals well. Therefore, this paper first proposes the overlapping group sparse model. It constructs weight coefficients by analyzing the salient features of a signal. It uses convex optimization techniques to solve the sparse optimization model and applies the method to extract features of rolling bearing composite faults. For the problem of extracting multi-scale feature information from rolling bearing composite fault signals, this paper proposes a new deep complex convolutional neural network model. This model fully considers the multi-scale information of rolling bearing signals. The complex information in this model not only has a rich representation ability but can also be used to extract more scale information. Finally, the classifier of this model is used to identify rolling bearing faults. This paper proposes a new rolling bearing fault diagnosis algorithm based on overlapping group sparse model-deep complex convolutional neural network. The experimental results show that the method proposed in this paper can not only effectively identify rolling bearing faults under constant operating conditions, but also accurately identify rolling bearing fault signals under changing operating conditions. Additionally, the classification accuracy of the method proposed in this paper is superior to that of traditional machine learning methods. The proposed method also has certain advantages over other deep learning methods.
引用
收藏
页码:2353 / 2368
页数:15
相关论文
共 50 条
  • [1] Rolling bearing fault diagnosis algorithm using overlapping group sparse-deep complex convolutional neural network
    An, Fengping
    Wang, Jianrong
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2353 - 2368
  • [2] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [3] A review on convolutional neural network in rolling bearing fault diagnosis
    Li, Xin
    Ma, Zengqiang
    Yuan, Zonghao
    Mu, Tianming
    Du, Guoxin
    Liang, Yan
    Liu, Jingwen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [4] Rolling Bearing Real Time Fault Diagnosis Using Convolutional Neural Network
    Zhou, Funa
    Zhou, Wei
    Chen, Danmin
    Wen, Chenglin
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 377 - 382
  • [5] A deep ensemble dense convolutional neural network for rolling bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Liu, Shaowei
    Zhao, Ke
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (10)
  • [6] Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network
    Ding C.
    Feng Y.
    Wang M.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (02): : 287 - 296
  • [7] Intelligent fault diagnosis algorithm of rolling bearing based on optimization algorithm fusion convolutional neural network
    Wang, Qiushi
    Sun, Zhicheng
    Zhu, Yueming
    Song, Chunhe
    Li, Dong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19963 - 19982
  • [8] Rolling Bearing Fault Diagnosis Using Time-Frequency Analysis and Deep Transfer Convolutional Neural Network
    Chen, Zhihao
    Cen, Jian
    Xiong, Jianbin
    IEEE ACCESS, 2020, 8 : 150248 - 150261
  • [9] Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing
    Li J.
    Liu Y.
    Yu Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (11): : 2423 - 2431
  • [10] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713