The Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{r}$$\end{document}-Variational Integral

被引:0
作者
Francesco Tulone
Paul Musial
机构
[1] University of Palermo,
[2] Chicago State University,undefined
关键词
-Variational Integral; Integral; Non-absolute integral; 26A39; 28C99;
D O I
10.1007/s00009-021-01962-8
中图分类号
学科分类号
摘要
We define the Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r$$\end{document}-variational integral and we prove that it is equivalent to the HKr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HK_r$$\end{document}-integral defined in 2004 by P. Musial and Y. Sagher in the Studia Mathematica paper TheLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{r}$$\end{document}-Henstock–Kurzweil integral. We prove also the continuity of Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r$$\end{document}-variation function.
引用
收藏
相关论文
共 33 条
[1]  
Boccuto A(2015)Integration of functions ranging in complex Riesz space and some applications in harmonic analysis Math. Notes 98 25-37
[2]  
Skvortsov VA(2015)A hake-type theorem for integrals with respect to abstract derivation bases in the Riesz space setting Math. Slovaca 65 1319-1336
[3]  
Tulone F(1961)Local properties of solutions of elliptic partial differential equations Studia Math. 20 171-225
[4]  
Boccuto A(1967)Perron’s integral for derivatives in Studia Math. 28 295-316
[5]  
Skvortsov VA(2004)The Studia Math. 160 53-81
[6]  
Tulone F(2015)-Henstock-Kurzweil integral Electron. J. Differ. Equ. 2015 1-7
[7]  
Calderon AP(2019)Integration by parts for the Minim. Theory Appl. 4 151-160
[8]  
Zygmund A(2018)-Henstock-Kurzweil integral Bull. Ga. Natl. Acad. Sci. 12 12-15
[9]  
Gordon L(2019)Dual of the class of HKr integrable functions J. Contemp. Math. 54 288-295
[10]  
Musial P(2011)On the possible values of upper and lower derivatives with respect to differentiation bases of product structure Tatra Mt. Math. Publ. 49 81-88