New Quicker Sequences and Inequalities with Continued Fraction Towards Euler’s Constant

被引:0
作者
Xiaoyun Hu
Dawei Lu
Xiaoguang Wang
机构
[1] Dalian University of Technology,School of Mathematical Sciences
来源
Results in Mathematics | 2018年 / 73卷
关键词
Euler’s constant; continued fraction; rate of convergence; asymptotic expansion; inequalities; 11Y60; 41A25; 34E05; 11A55; 33F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some new quicker convergent sequences toward Euler’s constant using the continued fraction. For demonstrating the superiority of the new sequences over DeTemple’s sequence, Mortici’s sequences and Lu’s sequences, some numerical simulations are also given in this article.
引用
收藏
相关论文
共 22 条
[1]  
DeTemple DW(1993)A quicker convergences to Euler’s constant Am. Math. Mon. 100 468-470
[2]  
DeTemple DW(2006)A gemetric look at sequences that converge to Euler’s constant College Math. J. 37 128-131
[3]  
Lu D(2014)A new quicker sequence convergent to Euler’s constant J. Number Theory 136 320-329
[4]  
Lu D(2014)Some quicker classes of sequences convergent to Euler’s constant Appl. Math. Comput. 232 172-177
[5]  
Lu D(2014)Some new convergent sequences and inequalities of Euler’s constant J. Math. Anal. Appl. 419 541-552
[6]  
Lu D(2015)Some new continued fraction approximation of Euler’s constant J. Number Theory 147 69-80
[7]  
Song L(2005)An improvement of the convergence speed of the sequence An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 13 97-100
[8]  
Yu Y(2007) converging to Euler’s constant Math. Balk. (N.S.) 21 301-308
[9]  
Mortici C(2010)Some new facts in discrete asymptotic analysis Anal. Appl. (Singap.) 8 99-107
[10]  
Vernescu A(2010)Optimizing the rate of convergence in some new calsses of sequences convergent to Euler’s constant Asymptot. Anal. 68 125-134