Paley–Wiener theorems for the U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {U}(n)}$$\end{document}-spherical transform on the Heisenberg group

被引:0
作者
Francesca Astengo
Bianca Di Blasio
Fulvio Ricci
机构
[1] Dipartimento di Matematica,
[2] Dipartimento di Matematica e Applicazioni,undefined
[3] Scuola Normale Superiore,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2015年 / 194卷 / 6期
关键词
Fourier transform; Schwartz space; Paley–Wiener Theorems; Heisenberg group; Primary  43A80; Secondary  22E25;
D O I
10.1007/s10231-014-0442-2
中图分类号
学科分类号
摘要
We prove several Paley–Wiener-type theorems related to the spherical transform on the Gelfand pair (Hn⋊U(n),U(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({H_n}\rtimes {\text {U}(n)},{\text {U}(n)}\big )$$\end{document}, where Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_n}$$\end{document} is the 2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n+1$$\end{document}-dimensional Heisenberg group. Adopting the standard realization of the Gelfand spectrum as the Heisenberg fan in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we prove that spherical transforms of U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {U}(n)}$$\end{document}-invariant functions and distributions with compact support in Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_n}$$\end{document} admit unique entire extensions to C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^2$$\end{document}, and we find real-variable characterizations of such transforms. Next, we characterize the inverse spherical transforms of compactly supported functions and distributions on the fan, giving analogous characterizations.
引用
收藏
页码:1751 / 1774
页数:23
相关论文
共 29 条
[1]  
Andersen NB(2010)Real Paley–Wiener theorems and local spectral radius formulas Trans. Am. Math. Soc. 362 3613-3640
[2]  
de Jeu M(1976)Paley–Wiener type theorem for the Heisenberg groups Proc. Jpn. Acad. 52 331-333
[3]  
Ando S(1997)Q.U.P. and Paley–Wiener properties of unimodular, especially nilpotent, Lie groups Proc. Am. Math. Soc. 125 1071-1080
[4]  
Arnal D(2007)Gelfand transforms of polyradial Schwartz functions on the Heisenberg group J. Funct. Anal. 251 772-791
[5]  
Ludwig J(2009)Gelfand pairs on the Heisenberg group of and Schwartz functions J. Funct. Anal. 256 1565-1587
[6]  
Astengo F(1990)A property of infinitely differentiable functions Proc. Am. Math. Soc. 108 73-76
[7]  
Di Blasio B(1998)The spherical transform of a Schwartz function on the Heisenberg group J. Funct. Anal. 154 379-423
[8]  
Ricci F(1996)Spectra for Gelfand pairs associated with the Heisenberg group Colloq. Math. 71 305-328
[9]  
Astengo F(1992)Harmonic analysis on solvable extensions of J. Geom. Anal. 2 213-248
[10]  
Di Blasio B(2010)-type groups Math. Nachr. 283 200-214