An off-shell formulation for internally gauged D = 5, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} supergravity from superconformal methods

被引:0
作者
F. Coomans
M. Ozkan
机构
[1] Katholieke Universiteit Leuven,Instituut voor Theoretische Fysica
[2] Texas A&M University,George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy
关键词
Gauge Symmetry; Field Theories in Higher Dimensions; Space-Time Symmetries; Supergravity Models;
D O I
10.1007/JHEP01(2013)099
中图分类号
学科分类号
摘要
We use the superconformal method to construct a new formulation for pure off-shell D = 5, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} Poincaré supergravity and present its internal gauging. The main difference between the traditional formulation and our new formulation is the choice of the Dilaton Weyl Multiplet as the background Weyl Multiplet and the choice of a Linear compensating Multiplet. We do not introduce an external Vector Multiplet to gauge the theory, but instead use the internal vector of the Dilaton Weyl Multiplet. We show that the corresponding on-shell theory is Einstein-Maxwell supergravity. We believe that this gauging method can be applied in more complicated scenarios such as the inclusion of off-shell higher derivative invariants.
引用
收藏
相关论文
共 33 条
[1]  
Günaydin M(1984)The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Algebras Nucl. Phys. B 242 244-undefined
[2]  
Sierra G(1985)Gauging the D = 5 Maxwell-Einstein Supergravity Theories: More on Jordan Algebras Nucl. Phys. B 253 573-undefined
[3]  
Townsend P(2000)The Gauging of five-dimensional, N = 2 Maxwell-Einstein supergravity theories coupled to tensor multiplets Nucl. Phys. B 572 131-undefined
[4]  
Günaydin M(2000)General matter coupled N = 2, D = 5 gauged supergravity Nucl. Phys. B 585 143-undefined
[5]  
Sierra G(2004)N = 2 supergravity in five-dimensions revisited Class. Quant. Grav. 21 3015-undefined
[6]  
Townsend P(2002)Superconformal N = 2, D = 5 matter with and without actions JHEP 10 045-undefined
[7]  
Günaydin M(2001)Weyl multiplets of N = 2 conformal supergravity in five-dimensions JHEP 06 051-undefined
[8]  
Zagermann M(2001)Superconformal tensor calculus in five-dimensions Prog. Theor. Phys. 106 221-undefined
[9]  
Ceresole A(2000)Supergravity tensor calculus in 5 − D from 6-D Prog. Theor. Phys. 104 835-undefined
[10]  
Dall’Agata G(2007)Supersymmetric Completion of an R Prog. Theor. Phys. 117 533-undefined