The mechanism of catalysis by type-II NADH:quinone oxidoreductases

被引:0
|
作者
James N. Blaza
Hannah R. Bridges
David Aragão
Elyse A. Dunn
Adam Heikal
Gregory M. Cook
Yoshio Nakatani
Judy Hirst
机构
[1] MRC Mitochondrial Biology Unit,Department of Microbiology and Immunology
[2] Australian Synchrotron,undefined
[3] University of Otago,undefined
[4] Maurice Wilkins Centre for Molecular Biodiscovery,undefined
[5] The University of Auckland,undefined
来源
Scientific Reports | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Type II NADH:quinone oxidoreductase (NDH-2) is central to the respiratory chains of many organisms. It is not present in mammals so may be exploited as an antimicrobial drug target or used as a substitute for dysfunctional respiratory complex I in neuromuscular disorders. NDH-2 is a single-subunit monotopic membrane protein with just a flavin cofactor, yet no consensus exists on its mechanism. Here, we use steady-state and pre-steady-state kinetics combined with mutagenesis and structural studies to determine the mechanism of NDH-2 from Caldalkalibacillus thermarum. We show that the two substrate reactions occur independently, at different sites, and regardless of the occupancy of the partner site. We conclude that the reaction pathway is determined stochastically, by the substrate/product concentrations and dissociation constants, and can follow either a ping-pong or ternary mechanism. This mechanistic versatility provides a unified explanation for all extant data and a new foundation for the development of therapeutic strategies.
引用
收藏
相关论文
共 50 条
  • [1] The mechanism of catalysis by type-II NADH: quinone oxidoreductases
    Blaza, James N.
    Bridges, Hannah R.
    Aragao, David
    Dunn, Elyse A.
    Heikal, Adam
    Cook, Gregory M.
    Nakatani, Yoshio
    Hirst, Judy
    SCIENTIFIC REPORTS, 2017, 7
  • [2] Taxonomic profile of type II NADH: quinone oxidoreductases and evolutionary implications
    Marreiros, B. C.
    Batista, A. P.
    Sena, F. V.
    Sousa, F. M.
    Pereira, M. M.
    FEBS JOURNAL, 2015, 282 : 185 - 185
  • [3] Regulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus
    Sena, Filipa V.
    Sousa, Filipe M.
    Oliveira, A. Sofia F.
    Soares, Claudio M.
    Catarino, Teresa
    Pereira, Manuela M.
    REDOX BIOLOGY, 2018, 16 : 209 - 214
  • [4] BACTERIAL NADH-QUINONE OXIDOREDUCTASES
    YAGI, T
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1991, 23 (02) : 211 - 225
  • [5] TYPE II NADH: QUINONE OXIDOREDUCTASES OF PLASMODIUM FALCIPARUM AND MYCOBACTERIUM TUBERCULOSIS: KINETIC AND HIGH-THROUGHPUT ASSAYS
    Fisher, Nicholas
    Warman, Ashley J.
    Ward, Stephen A.
    Biagini, Giancarlo A.
    METHODS IN ENZYMOLOGY, VOL 456: MITOCHONDRIAL FUNCTION, PART A: MITOCHONDRIAL ELECTRON TRANSPORT COMPLEXES AND REACTIVE OXYGEN SPECIES, 2009, 456 : 303 - 320
  • [6] Insights into the catalytic mechanism of type VI sulfide: quinone oxidoreductases
    Duzs, Agnes
    Miklovics, Nikolett
    Paragi, Gabor
    Rakhely, Gabor
    Toth, Andras
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2021, 1862 (02):
  • [7] Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family
    Bruno C. Marreiros
    Filipa V. Sena
    Filipe M. Sousa
    A. Sofia F. Oliveira
    Cláudio M. Soares
    Ana P. Batista
    Manuela M. Pereira
    Scientific Reports, 7
  • [8] Structural and Functional insights into the catalytic mechanism of the Type II NADH: quinone oxidoreductase family
    Marreiros, Bruno C.
    Sena, Filipa V.
    Sousa, Filipe M.
    Oliveira, A. Sofia F.
    Soares, Claudio M.
    Batista, Ana P.
    Pereira, Manuela M.
    SCIENTIFIC REPORTS, 2017, 7
  • [9] THE BACTERIAL ENERGY-TRANSDUCING NADH-QUINONE OXIDOREDUCTASES
    YAGI, T
    BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1141 (01) : 1 - 17
  • [10] Type-II NADH: quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites
    Sena, F.
    Batista, A.
    Catarino, T.
    Brito, J.
    Archer, M.
    Viertler, M.
    Madl, T.
    Cabrita, E.
    Pereira, M.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S62 - S62