A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

被引:0
|
作者
Adam Ouorou
机构
[1] CORE-MCN,Orange Labs, Research & Development
来源
Mathematical Programming | 2009年 / 119卷
关键词
90C30; 90C25; 65K05; Nonsmooth optimization; Subgradient; Proximal bundle methods; Cutting plane methods; Convex programming;
D O I
暂无
中图分类号
学科分类号
摘要
An algorithm is developed for minimizing nonsmooth convex functions. This algorithm extends Elzinga–Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga–Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. Instead of lower approximations used in proximal bundle methods, the present approach is based on some objects regularizing translated functions of the objective function. We propose some variants and using some academic test problems, we conduct a numerical comparative study with Elzinga–Moore algorithm and two other well-known nonsmooth methods.
引用
收藏
相关论文
共 50 条
  • [21] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang Yang
    Liping Pang
    Xuefei Ma
    Jie Shen
    Journal of Optimization Theory and Applications, 2014, 163 : 900 - 925
  • [22] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang, Yang
    Pang, Liping
    Ma, Xuefei
    Shen, Jie
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) : 900 - 925
  • [23] Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability
    Fan Wu
    Wei Bian
    Journal of Optimization Theory and Applications, 2023, 197 : 539 - 572
  • [24] Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability
    Wu, Fan
    Bian, Wei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 197 (02) : 539 - 572
  • [25] AN ALTERNATING LINEARIZATION METHOD WITH INEXACT DATA FOR BILEVEL NONSMOOTH CONVEX OPTIMIZATION
    Li, Dan
    Pang, Li-Ping
    Guo, Fang-Fang
    Xia, Zun-Quan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (03) : 859 - 869
  • [26] A doubly stabilized bundle method for nonsmooth convex optimization
    Welington de Oliveira
    Mikhail Solodov
    Mathematical Programming, 2016, 156 : 125 - 159
  • [27] Solving Convex MINLP Optimization Problems Using a Sequential Cutting Plane Algorithm
    Claus Still
    Tapio Westerlund
    Computational Optimization and Applications, 2006, 34 : 63 - 83
  • [28] Solving convex MINLP optimization problems using a sequential cutting plane algorithm
    Still, C
    Westerlund, T
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (01) : 63 - 83
  • [29] A doubly stabilized bundle method for nonsmooth convex optimization
    de Oliveira, Welington
    Solodov, Mikhail
    MATHEMATICAL PROGRAMMING, 2016, 156 (1-2) : 125 - 159
  • [30] Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization
    Makela, Marko M.
    Karmitsa, Napsu
    Wilppu, Outi
    MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES, 2016, 40 : 191 - 204