A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

被引:0
|
作者
Adam Ouorou
机构
[1] CORE-MCN,Orange Labs, Research & Development
来源
Mathematical Programming | 2009年 / 119卷
关键词
90C30; 90C25; 65K05; Nonsmooth optimization; Subgradient; Proximal bundle methods; Cutting plane methods; Convex programming;
D O I
暂无
中图分类号
学科分类号
摘要
An algorithm is developed for minimizing nonsmooth convex functions. This algorithm extends Elzinga–Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga–Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. Instead of lower approximations used in proximal bundle methods, the present approach is based on some objects regularizing translated functions of the objective function. We propose some variants and using some academic test problems, we conduct a numerical comparative study with Elzinga–Moore algorithm and two other well-known nonsmooth methods.
引用
收藏
相关论文
共 50 条
  • [1] A proximal cutting plane method using Chebychev center for nonsmooth convex optimization
    Ouorou, Adam
    MATHEMATICAL PROGRAMMING, 2009, 119 (02) : 239 - 271
  • [2] A NEW PROXIMAL CHEBYCHEV CENTER CUTTING PLANE ALGORITHM FOR NONSMOOTH OPTIMIZATION AND ITS CONVERGENCE
    Shen, Jie
    Lv, Jian
    Guo, Fang-Fang
    Gao, Ya-Li
    Zhao, Rui
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2018, 14 (03) : 1143 - 1155
  • [3] A TILTED CUTTING PLANE PROXIMAL BUNDLE METHOD FOR CONVEX NONDIFFERENTIABLE OPTIMIZATION
    KIWIEL, KC
    OPERATIONS RESEARCH LETTERS, 1991, 10 (02) : 75 - 81
  • [4] Fast proximal algorithms for nonsmooth convex optimization
    Ouorou, Adam
    OPERATIONS RESEARCH LETTERS, 2020, 48 (06) : 777 - 783
  • [5] Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method
    Goffin, JL
    Vial, JP
    OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (05): : 805 - 867
  • [6] A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
    Joki, Kaisa
    Bagirov, Adil M.
    Karmitsa, Napsu
    Makela, Marko M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (03) : 501 - 535
  • [7] A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
    Kaisa Joki
    Adil M. Bagirov
    Napsu Karmitsa
    Marko M. Mäkelä
    Journal of Global Optimization, 2017, 68 : 501 - 535
  • [8] On the global convergence of a nonmonotone proximal bundle method for convex nonsmooth minimization
    Hou, Liusheng
    Sun, Wenyu
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02): : 227 - 235
  • [9] Efficiency of the analytic center cutting plane method for convex minimization
    Kiwiel, KC
    SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) : 336 - 346
  • [10] A feasible directions method for nonsmooth convex optimization
    Herskovits, Jose
    Freire, Wilhelm P.
    Fo, Mario Tanaka
    Canelas, Alfredo
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 44 (03) : 363 - 377