Nanostructured Interfaces for Thermoelectrics

被引:0
|
作者
Y. Gao
A. M. Marconnet
M. A. Panzer
S. LeBlanc
S. Dogbe
Y. Ezzahri
A. Shakouri
K. E. Goodson
机构
[1] Stanford University,Mechanical Engineering Department
[2] Stanford Nanofabrication Facility,Baskin School of Engineering
[3] University of California at Santa Cruz,undefined
来源
关键词
Thermal interface materials; thermoelectric modules; thermoreflectance thermometry; vertically aligned carbon nanotubes; silicon germanium; thermomechanical stress;
D O I
暂无
中图分类号
学科分类号
摘要
Temperature drops at the interfaces between thermoelectric materials and the heat source and sink reduce the overall efficiency of thermoelectric systems. Nanostructured interfaces based on vertically aligned carbon nanotubes (CNTs) promise the combination of mechanical compliance and high thermal conductance required for thermoelectric modules, which are subjected to severe thermomechanical stresses. This work discusses the property require- ments for thermoelectric interface materials, reviews relevant data available in the literature for CNT films, and characterizes the thermal properties of vertically aligned multiwalled CNTs grown on a candidate thermoelectric material. Nanosecond thermoreflectance thermometry provides thermal property data for 1.5-μm-thick CNT films on SiGe. The thermal interface resistances between the CNT film and surrounding materials are the dominant barriers to thermal transport, ranging from 1.4 m2 K MW−1 to 4.3 m2 K MW−1. The volumetric heat capacity of the CNT film is estimated to be 87 kJ m−3 K−1, which corresponds to a volumetric fill fraction of 9%. The effect of 100 thermal cycles from 30°C to 200°C is also studied. These data provide the groundwork for future studies of thermoelectric materials in contact with CNT films serving as both a thermal and electrical interface.
引用
收藏
页码:1456 / 1462
页数:6
相关论文
共 50 条
  • [1] Nanostructured Interfaces for Thermoelectrics
    Gao, Y.
    Marconnet, A. M.
    Panzer, M. A.
    LeBlanc, S.
    Dogbe, S.
    Ezzahri, Y.
    Shakouri, A.
    Goodson, K. E.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) : 1456 - 1462
  • [2] Nanostructured thermoelectrics
    Pichanusakorn, Paothep
    Bandaru, Prabhakar
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2010, 67 (2-4): : 19 - 63
  • [3] Synthesis of nanostructured thermoelectrics
    Presson, Luke
    Szulczewski, Greg
    Sutch, Tabitha
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [4] Nanostructured Thermoelectrics Preface
    Reith, Heiko
    Nielsch, Kornelius
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (03): : 495 - 496
  • [5] Nanostructured Thermoelectrics: The New Paradigm?
    Kanatzidis, Mercouri G.
    CHEMISTRY OF MATERIALS, 2010, 22 (03) : 648 - 659
  • [6] Nanostructured and single phase thermoelectrics
    Kanatzidis, Mercouri
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [7] Nanoscale heat transfer and nanostructured thermoelectrics
    Chen, G
    ITHERM 2004, VOL 1, 2004, : 8 - 17
  • [8] Nanoscale heat transfer and nanostructured thermoelectrics
    Chen, Gang
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2006, 29 (02): : 238 - 246
  • [9] Computational strategies for design and discovery of nanostructured thermoelectrics
    Shiqiang Hao
    Vinayak P. Dravid
    Mercouri G. Kanatzidis
    Christopher Wolverton
    npj Computational Materials, 5
  • [10] Computational strategies for design and discovery of nanostructured thermoelectrics
    Hao, Shiqiang
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    Wolverton, Christopher
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)