Acoustic Nonlinearity Parameters Due to Microstructural Defects

被引:0
作者
Xiang Gao
Jianmin Qu
机构
[1] Tufts University,Department of Mechanical Engineering
来源
Acta Mechanica Solida Sinica | 2018年 / 31卷
关键词
Nonlinear ultrasound; Nondestructive evaluation; Acoustic nonlinearity parameter; Microstructural defects; Dislocations;
D O I
暂无
中图分类号
学科分类号
摘要
This study presents a general approach to derive the acoustic nonlinearity parameters induced by various types of dislocation configurations including dislocation strings (monopoles), dislocation dipoles, dislocation pileups and extended dislocations. It is found that expressions of the acoustic nonlinearity parameter induced by such a variety of dislocation configurations share a common mathematical form. They are all scaled with Lch/bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {L_{\mathrm{ch}} /b} \right) ^{n}$$\end{document}, where Lch\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\mathrm{ch}} $$\end{document} is a characteristic length of the dislocation configuration, b is the magnitude of the Burgers vector, and n is either 3 or 4. Semiquantitative analysis is presented to compare the magnitudes of the acoustic nonlinearity parameters among different types of dislocation configurations.
引用
收藏
页码:525 / 534
页数:9
相关论文
共 71 条
  • [1] Ju T(2016)Ultrasonic nondestructive evaluation of alkali-silica reaction damage in concrete prism samples Mater Struct 50 60-1273
  • [2] Achenbach JD(2006)Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves J Acoust Soc Am 120 1266-3452
  • [3] Jacobs LJ(2012)Evaluation of radiation damage using nonlinear ultrasound J Appl Phys 111 054911-1830
  • [4] Guimaraes M(2015)The second harmonic generation in reflection mode: an analytical, numerical and experimental study J Nondestruct Eval 35 6-2766
  • [5] Qu J(1073)On the atomic theory of elasticity Proc R Soc Lond Ser A Math Phys Sci 1950 178-236
  • [6] Kim J-Y(2011)On the acoustic-radiation-induced strain and stress in elastic solids with quadratic nonlinearity (L) J Acoust Soc Am 129 3449-326
  • [7] Jacobs LJ(2012)Pulse propagation in an elastic medium with quadratic nonlinearity (L) J Acoust Soc Am 131 1827-2962
  • [8] Qu J(1964)Anharmonicity due to glide motion of dislocations J Appl Phys 35 2761-5472
  • [9] Littles JW(1965)Dislocation contribution to the second harmonic generation of ultrasonic waves J Appl Phys 36 229-3354
  • [10] Matlack K(1994)Acoustic harmonic generation from fatigue-induced dislocation dipoles Philos Mag A 69 315-593