Bounds for zeros of a polynomial using numerical radius of Hilbert space operators

被引:0
|
作者
Pintu Bhunia
Santanu Bag
Kallol Paul
机构
[1] Jadavpur University,Department of Mathematics
[2] Vivekananda College For Women,Department of Mathematics
来源
Annals of Functional Analysis | 2021年 / 12卷
关键词
Numerical radius; Operator matrix; Zeros of polynomial; 47A12; 15A60; 26C10;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain bounds for the numerical radius of 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} operator matrices which improve on the existing bounds. We also show that the inequalities obtained here generalize the existing ones. As an application of the results obtained here, we estimate the bounds for the zeros of a monic polynomial and illustrate with numerical examples that the bounds are better than the existing ones.
引用
收藏
相关论文
共 50 条