Schwarz method for dual contact problems

被引:0
作者
Lori Badea
Frédéric Lebon
机构
[1] Institute of Mathematics of the Romanian Academy,LMA, CNRS UPR 7051
[2] Aix-Marseille Université,undefined
[3] Centrale Marseille,undefined
来源
Computational and Applied Mathematics | 2017年 / 36卷
关键词
Contact problems; Dual formulation; Domain decomposition methods; Schwarz method; Subspace correction methods; Variational inequalities; 65N55; 65K15; 74M10; 74M15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the convergence of the Schwarz method for contact problems with Tresca friction formulated in stress variables. In this dual variable, the problem is written as a variational inequality in the space Hdiv(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{div}(\Omega )$$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} being the domain of the problem. The method is introduced as a subspace correction algorithm. In this case, the global convergence and the error estimation of the method are already proved in the literature under some assumptions. However, the checking of these hypotheses in the space Hdiv(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{div}(\Omega )$$\end{document} cannot be proved easily, as for the space H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\Omega )$$\end{document}. The main result of this paper is to prove that these hypotheses are verified for this particular variational inequality. As in the case of the classical problems formulated in primal variables, the error estimate we obtain depends on the overlapping parameter of the domain decomposition.
引用
收藏
页码:719 / 731
页数:12
相关论文
共 26 条
[1]  
Alart P(1991)A mixed formulation for frictional contact problems prone to Newton like solution methods Comput Methods Appl Mech Eng 92 353-375
[2]  
Curnier A(1995)Solution of frictional contact problems using ILU and coarse/fine preconditioners Comput Mech 16 98-105
[3]  
Alart P(2006)Convergence rate of a Schwarz multilevel method for the constrained minimization of non-quadratic functionals SIAM J Numer Anal 44 449-477
[4]  
Lebon F(2012)One- and two-level Schwarz methods for inequalities of the second kind and their application to frictional contact Numer Math 120 573-599
[5]  
Badea L(2001)D-PANA : a convergent block-relaxation solution method for the discretized dual formulation of the Signorini–Coulomb contact problem C R Math Acad Sci Paris 333 1053-1058
[6]  
Badea L(2004)Relaxation procedures for solving Signorini–Coulomb contact problems Adv Eng Softw 35 595-600
[7]  
Krause R(1996)Formulation and approximation of quasistatic frictional contact Int J Eng Sci 34 783-798
[8]  
Bisegna P(1984)Existence of solutions of Signorini problems with friction Int J Eng Sci 22 567-575
[9]  
Lebon F(2009)Stress based finite element methods for solving contact problems: comparisons between various solution methods Adv Eng Softw 40 697-706
[10]  
Maceri F(2011)Error estimation and mesh adaptation for SignoriniCoulomb problems using E-FEM Comput Struct 89 1148-1154