Computational methods for single-cell omics across modalities

被引:0
|
作者
Mirjana Efremova
Sarah A. Teichmann
机构
[1] Wellcome Genome Campus,Wellcome Sanger Institute
[2] University of Cambridge,Theory of Condensed Matter Group, Cavendish Laboratory
来源
Nature Methods | 2020年 / 17卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-cell omics approaches provide high-resolution data on cellular phenotypes, developmental dynamics and communication networks in diverse tissues and conditions. Emerging technologies now measure different modalities of individual cells, such as genomes, epigenomes, transcriptomes and proteomes, in addition to spatial profiling. Combined with analytical approaches, these data open new avenues for accurate reconstruction of gene-regulatory and signaling networks driving cellular identity and function. Here we summarize computational methods for analysis and integration of single-cell omics data across different modalities and discuss their applications, challenges and future directions.
引用
收藏
页码:14 / 17
页数:3
相关论文
共 50 条
  • [1] Computational methods for single-cell omics across modalities
    Efremova, Mirjana
    Teichmann, Sarah A.
    NATURE METHODS, 2020, 17 (01) : 14 - 17
  • [2] Computational Methods for Single-Cell Imaging and Omics Data Integration
    Watson, Ebony Rose
    Taherian Fard, Atefeh
    Mar, Jessica Cara
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 8
  • [3] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stanojevic, Stefan
    Li, Yijun
    Ristivojevic, Aleksandar
    Garmire, Lana X.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 836 - 849
  • [4] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stefan Stanojevic
    Yijun Li
    Aleksandar Ristivojevic
    Lana X.Garmire
    Genomics,Proteomics & Bioinformatics, 2022, (05) : 836 - 849
  • [5] Spatial Omics: Single-Cell Biology across Tissues
    Genetic Engineering and Biotechnology News, 2021, 41 (09):
  • [6] Best practices for single-cell analysis across modalities
    Heumos, Lukas
    Schaar, Anna C.
    Lance, Christopher
    Litinetskaya, Anastasia
    Drost, Felix
    Zappia, Luke
    Luecken, Malte
    Strobl, Daniel
    Henao, Juan
    Curion, Fabiola B.
    Schiller, Herbert
    Theis, Fabian
    NATURE REVIEWS GENETICS, 2023, 24 (08) : 550 - 572
  • [7] Best practices for single-cell analysis across modalities
    Lukas Heumos
    Anna C. Schaar
    Christopher Lance
    Anastasia Litinetskaya
    Felix Drost
    Luke Zappia
    Malte D. Lücken
    Daniel C. Strobl
    Juan Henao
    Fabiola Curion
    Herbert B. Schiller
    Fabian J. Theis
    Nature Reviews Genetics, 2023, 24 : 550 - 572
  • [8] Computational Methods for Single-Cell Proteomics
    Guldberg, Sophia M.
    Okholm, Trine Line Hauge
    McCarthy, Elizabeth E.
    Spitzer, Matthew H.
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2023, 6 : 47 - 71
  • [9] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [10] Computational framework decomposes and annotates single-cell and spatial omics
    Nature Biotechnology, 2023, 41 : 1396 - 1397