Asymptotic nonlinearity of vectorial Boolean functions

被引:0
作者
Stéphanie Dib
机构
[1] Institut de Mathématiques de Luminy,
来源
Cryptography and Communications | 2014年 / 6卷
关键词
Vectorial Boolean functions; Nonlinearity; S-boxes; Bent functions; 42; 28; 94;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinearity of a Boolean function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F: \mathbb{F}_{2}^{m}\rightarrow \mathbb{F}_{2}$\end{document} is the minimum Hamming distance between f and all affine functions. The nonlinearity of a S-box \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: \mathbb{F}_{2}^{m}\rightarrow \mathbb{F}_{2}^{n}$\end{document} is the minimum nonlinearity of its component (Boolean) functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v\cdot f,\, v\in \mathbb{F}_{2}^{n}\,\backslash \{0\}$\end{document}. This notion quantifies the level of resistance of the S-box to the linear attack. In this paper, the distribution of the nonlinearity of (m, n)-functions is investigated. When n = 1, it is known that asymptotically, almost all m-variable Boolean functions have high nonlinearities. We extend this result to (m, n)-functions.
引用
收藏
页码:103 / 115
页数:12
相关论文
共 11 条
  • [1] Carlet C(2007)Nonlinearities of S-boxes Finite Fields Appl. 13 121-135
  • [2] Ding C(1973)On a result of Salem and Zygmund concerning random polynomials Stud. Sci. Math. Hung. 8 369-377
  • [3] Halász G(2008/2009)On the distribution of Boolean function nonlinearity SIAM J. Discret. Math. 23 79-95
  • [4] Litsyn S(1998)On cryptographic properties of random Boolean functions J. UCS. 4 705-717
  • [5] Shpunt A(2004)Sur la non-linéarité des fonctions Booléennes Acta Arith. 115 1-22
  • [6] Olejár D(2006)Asymptotic nonlinearity of Boolean functions Des. Codes Crypt. 40 59-70
  • [7] Stanek M(1954)Some properties of trigonometric series whose terms have random signs Acta Math. 91 245-301
  • [8] Rodier F(undefined)undefined undefined undefined undefined-undefined
  • [9] Rodier F(undefined)undefined undefined undefined undefined-undefined
  • [10] Salem R(undefined)undefined undefined undefined undefined-undefined